Case Study 2: Transmission planning under uncertainty EDF, April 11, 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773897

Case Study definition

"EU-wide transmission planning under uncertainty"

- Focus on the high-voltage electricity sector
- EU-wide scope
- Multi-stage (from 2020 to 2040)
- Explicit consideration of long-term uncertainties

2040

2030

2020

2040

2040

2040

2040

Case Study objectives

The objectives of this case study are:

- 1. Demonstrate tool's ability to carry out system planning under uncertainty
 - \rightarrow important technical novelty set to increase in relevance
- 2. Identify **optimal development pathways** for the European transmission system under future uncertainty

 \rightarrow minimum regret capital commitments – inform European TSOs

3. Assess the impact of long-term uncertainty on planning

 \rightarrow inform regulatory framework

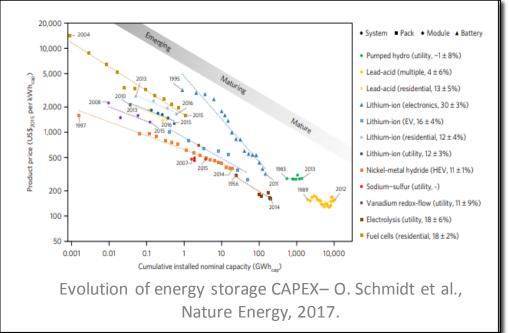
April 11, 2018

4. Assess the value of flexible non-network technologies (storage and demand-side)

 \rightarrow inform future innovation directions

3

Sources of uncertainty


Historically, system planning has been carried out against a **single scenario**.

However, planning now entails significant uncertainty:

- Location/size/type of new generation
- Electrification of transport & heat

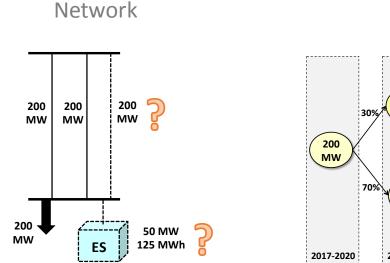
April 11. 2018

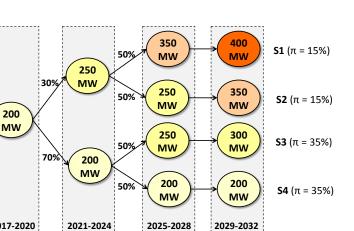
Investment cost of new technologies

Why is uncertainty important?

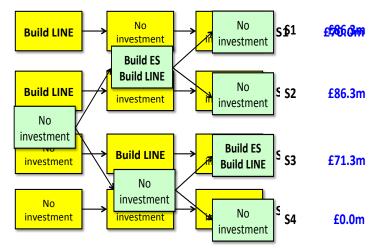
- Capital decisions in power systems are largely irreversible.

 -> risk of inefficient investment -stranded assets
- There is learning regarding future developments
 → inter-temporal resolution of uncertainty
- The planner can exert managerial flexibility
 - \rightarrow 'Fit-and-forget' vs. 'Wait-and-see'.


Planning-under-uncertainty optimisation frameworks are fundamental for identifying **openings for strategic action**


5

Motivating Example I

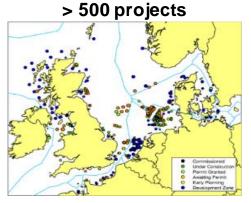


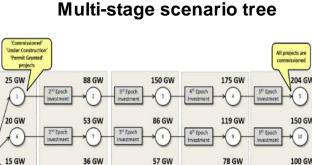
April 11, 2018

Scenarios

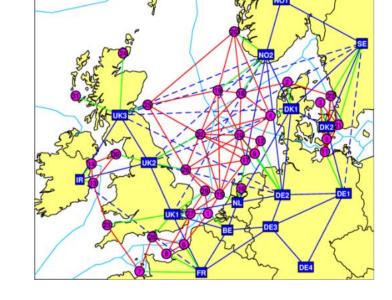
Investment plan (igmothgnoereataty)y)

Consideration of uncertainty leads to radically different firststage decisions!


G. Strbac et al. "Opportunities for Energy Storage: As sessing Whole-System Economic Benefits of Energy Storage in Future Electricity Systems", IEEE Power and Energy Magazine, 2017.

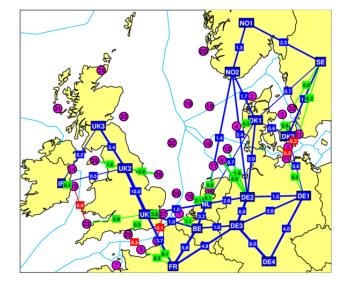

Motivating Example II – North Sea Grid

Transmission investment in North Seas countries (2020-2045) under uncertainty wrt future offshore wind deployment.

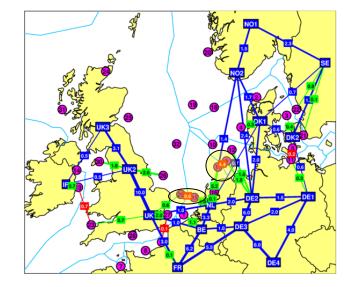


2030 - 203

2020-2024


2025 - 2029

Candidate topologies



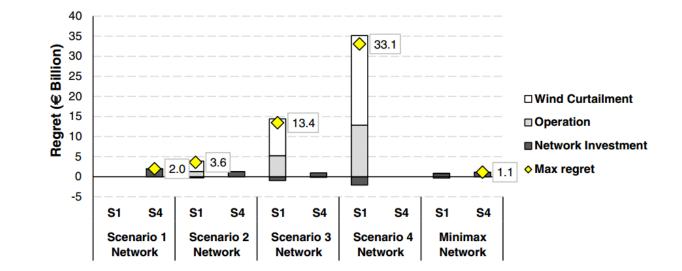
Motivating Example II – North Sea Grid

1st stage commitments -High wind deployment scenario

1st stage commitments -Low wind deployment scenario

1st stage commitments -Strategic planning Previously "unseen" opportunities are uncovered

April 11, 2018


I. Konstantelos et al. "Coordination and uncertainty in strategic network investment: Case on the North Seas Grid", Energy Economics, 2017.

Motivating Example II – North Sea Grid

Adopting a deterministic view of the future can lead to:

- Over-investment
- Under-investment
- Disregard of flexible investment options

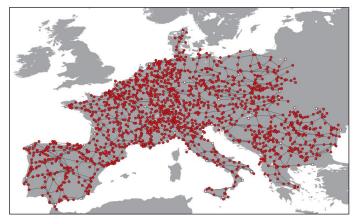
Model Features

Investment constraints

- -New builds, reinforcements, FACTS, energy storage, DSR etc.
- -Build times
- -Asset age and projected decommissioning dates

Operational constraints:

- Centralised operation of assets
- -DC OPF (ex-post validated on AC)

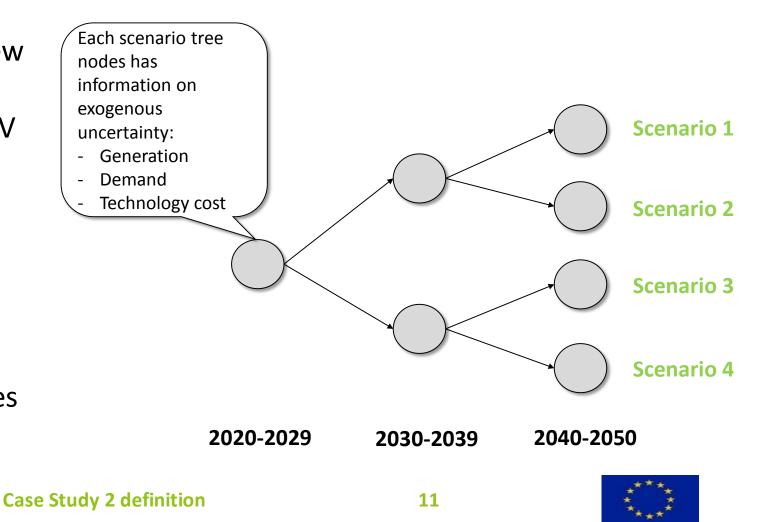

Regulatory constraints:

- Carbon emission targets
- -Target network asset redundancy level for security (e.g. N-1)
- Policy towards cross-border interconnections

Uncertainty modelling:

April 11, 2018

-Scenario trees


Europe-RE net model

Which uncertainties are modelled?

- Location, type and size of new generators
 (Focus on nukes, gas, coal, PV and offshore wind)
- Electric **demand** increase (electrification of heat + transport)
- Future CAPEX of technologies such as Energy storage

April 11, 2018

Model outputs

□ Investment and operational cost per scenario, stage etc.

Optimal network investment strategy

- Line reinforcements
- Energy Storage, DSR schemes, FACTs etc.

□ All operational data:

- Line flows
- Cross-border trade volumes
- Generation output levels/hours of operation
- Use of Energy Storage, DSR etc.
- CO2 levels

Revenue of all players:

- TSOs (regulated/FTR-based revenue model)
- Generators
- DSR schemes, energy storage etc.

Further insights

□ Insights can be obtained by comparing several studies :

Assessing the impact of uncertainty:

- 1. Carry out deterministic studies for each of the scenarios and identify optimal investment actions.
- 2. Subsequently, carry out stochastic studies to assess impact of particular sources and identify robust strategic actions.

Assessing the value of new technologies:

- 1. Basecase: only conventional transmission reinforcements allowed.
- 2. Progressive addition of new technologies to evaluate their net benefit and their complementarity

Discussion points

Sources of uncertainty

Any other potential aspects?

Data

Useful data sources on future scenario projections (national/EU-wide) ?

Additional sensitivity analysis/potential uses

Thank you

Questions?

April 11, 2018

