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A generic Multicommodity flow model

Graph G = (N,A), a generic Multicommodity flow model

min
∑

k∈K
∑

(i , j)∈A ckij x
k
ij +

∑
(i , j)∈A fijyij (1)∑

(i , j)∈A xkij −
∑

(j ,i)∈A xkji = bki i ∈ N , k ∈ K (2)∑
k∈K xkij ≤ uijyij (i , j) ∈ A (3)

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K (4)

y ∈ Y (5)

Often bki ≡ (sk , tk , dk), i.e., commodities K ≡ O-D pairs,
possibly with xij → dkxij , xij ∈ { 0 , 1 } (unsplittable routing)

Countless many relevant special cases:

different Y (often, but not always ⊆ { 0 , 1 }|A|) =⇒
almost all graph design problems

bipartite graph =⇒ facility location

multiple node/arc capacities by graph transformations . . .

Countless many generalizations (extra constraints, nonlinearities, . . . )
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Multicommodity flow applications

Pervasive structure in logistic and transportation,
often very large (time-space =⇒ acyclic) G , “few” commodities

Common in many other areas (telecommunications, energy, . . . ),
possibly “small” (undirected) G , “many” commodities

Interesting links with many hard problems (e.g. Max-Cut)

Hard to solve in general: many (difficult) problems in one

Even continuous versions “hard”: very-large-scale LPs

Many sources of structure =⇒ the paradise of decomposition1,2

1
Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Man. Sci., 1958

2
Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Op. Res., 1960

Frangioni, Gendron, Gorgone Separable Decomposition for Network Design Odysseus 2018 4 / 49



(Very) Classical decomposition approaches

Lagrangian relaxation3 of linking constraints:
(3) + (4): =⇒ flow (shortest path) relaxation

(2): =⇒ knapsack relaxation

others possible (cf. Bernard’s talk)

Benders’ decomposition4 of linking variables:
design (y) variables are “naturally” linking

Benders’ cuts are metric inequalities defining the multiflow feasibility

Linking variables can be artificially added (resource decomposition)5

xkij ≤ ukij ,
∑

k∈K ukij ≤ uij

This talk about Lagrange, but many ideas can be applied to Benders6

3
Geoffrion “Lagrangean relaxation for integer programming” Math. Prog. Study, 1974

4
Benders “Partitioning procedures for solving mixed-variables programming problems” Num. Math., 1962

5
Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci. 1977

6
van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches, with Application [. . . ]” CO&A, 2016
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Decomposition 101

Simplifying the notation:

(Π) max { cx : Ax = b , x ∈ X }
Ax = b “complicating” ≡ optimizing upon X “easy”

Almost always X =
⊗

h∈K X
h (K 6= K ) ≡ Ax = b linking constraints

The best possible (convex = solvable) relaxation

(Π̄) max { cx : Ax = b , x ∈ conv(X ) } (6)

All our X compact, represent conv(X ) by vertices

conv(X ) =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
=⇒ Dantzig-Wolfe reformulation2 of (Π̄):

(Π̃)


max c

( ∑
x̄∈X x̄θx̄

)
A
( ∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X
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Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

B ⊂ X (small), solve master problem restricted to B

(ΠB) max { cx : Ax = b , x ∈ conv(B) }

feed (partial) dual optimal solution λ∗ (of Ax = b) to pricing problem

(Πλ∗) max { (c − λ∗A)x : x ∈ X } [ + λ∗b ]

(Lagrangian relaxation), optimal solution x̄ of (Πλ∗)→ B

Dual: (∆B) min
{
fB(λ) = max { cx + λ(b − Ax) : x ∈ B }

}
fB = lower approximation of “true” Lagrangian function

f (λ) = max { cx + λ(b − Ax) : x ∈ X }

=⇒ (∆B) outer approximation of Lagrangian dual ≡ (Π̃) ≡ (Π̄)

(∆) min
{
f (λ) = max { cx + λ(b − Ax) : x ∈ X }

}
(7)

Dantzig-Wolfe decomposition ≡ Cutting Plane approach to (∆)7

7
Kelley “The Cutting-Plane Method for Solving Convex Programs” Journal of the SIAM, 1960
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Issue with the approach: instability

λ∗k+1 can be very far from λ∗k , where fB is a “bad model” of f

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: {λ∗k} is unstable, has no locality properties ≡
convergence speed does not improve near the optimum

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of width δ

δ 1e+4 1e+2 1e+0 1e−2 1e−4 1e−5 1e−6

r.it. 1.07 1.12 0.86 0.77 0.56 0.19 0.04

(relative iterations to δ =∞)

Would work wonders . . .

if only we knew the dual optimum
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Stabilizing DW

Current point λ̄, box of size t > 0 around it

Stabilized dual master problem8

(∆B,λ̄,t) min
{
fB( λ̄+ d ) : ‖ d ‖∞ ≤ t

}
(8)

Corresponding stabilized primal master problem

(ΠB,λ̄,t) max { cx+λ̄z−t‖ z ‖1 : z = b−Ax , x ∈ conv(B) } (9)

i.e., just Dantzig-Wolfe with slacks

When stuck and z∗ = b − Ax∗ 6= 0, either move λ̄ or enlarge t

Uses just LP tools, relatively minor modifications

How should one choose t?

8
Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” OR, 1975
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Choosing t
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Left/right = distance from dual optimum/relative gap

Stabilized with (fixed) different t, un-stabilized (t =∞)

One can clearly over-stabilize
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More general

Perhaps a different stabilizing term would help? Why not9

(∆B,λ̄,t) min
{
fB( λ̄+ d ) + 1

2t ‖ d ‖
2
2

}
More general: stabilizing term D, stabilized master problems

(∆B,λ̄,D) min
{
fB( λ̄+ d ) +D( d )

}
(ΠB,λ̄,D) max

{
cx + λ̄(b − Ax)−D∗(Ax − b) : x ∈ conv(B)

} (10)

(“∗” = Fenchel’s conjugate): a generalized augmented Lagrangian

Change λ̄ when f (λ̄+ d∗)� f (λ̄), appropriate D =⇒ converges10

Nifty aggregation trick: still converges with “poorman bundle”
B = { x∗ } (although rather slowly11 ≈ volume12 ≡ subgradient)

9
Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, 1978

10
F. “Generalized Bundle Methods” SIOPT, 2002

11
Briant, Lemaréchal, et. al. “Comparison of bundle and classical column generation” Math. Prog., 2006

12
Bahiense, Maculan, Sagastizábal “The volume algorithm revisited: relation with bundle methods” Math. Prog., 2002

Frangioni, Gendron, Gorgone Separable Decomposition for Network Design Odysseus 2018 12 / 49



In practice?

Either D = 1
2t ‖ · ‖

2
2 ≡ D∗ = 1

2 t‖ · ‖
2
2, with specialized solvers13

Or its piecewise-linear approximations14

(ΠB,λ̄,D)



max c
( ∑

x̄∈B x̄θx̄
)
−λ̄ (s− + w− − w+ − s+)
+γ−s− + δ−w− + δ+w+ + γ+s+

A
( ∑

x̄∈B x̄θx̄
)

+s− + w− − w+ − s+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s− ≤ ζ− , 0 ≤ s+ ≤ ζ+

0 ≤ w− ≤ ε− , 0 ≤ w+ ≤ ε+

same constraints as (ΠB) + some slack variables

Can be made to work efficiently despite the complex master problem

13
F. “Solving semidefinite quadratic problems within nonsmooth optimization algorithms” Computers & O.R., 1996

14
Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Disc. Appl. Math., 2009
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Disaggregate master problem

Exploit separability: X = X 1 × X 2 × . . .× X |K | =⇒
conv(X ) = conv(X 1)× conv(X 2)× . . .× conv(X |K |) =⇒

max
∑

k∈K c
k
( ∑

x̄k∈X k x̄kθkx̄
)∑

k∈K A
k
( ∑

x̄k∈X k x̄kθkx̄
)

= b∑
x̄k∈X k θkx̄ = 1 , θk ≥ 0 k ∈ K

Aggregated case: θk = θh, h 6= k (rather innatural)

(Many) more columns but sparser, more rows

More efficient than aggregated formulation15

Master problem size ≈ time increases, but convergence speed
increases a lot ≡ consistent improvement

It still has to be stabilized (most of the times)

15
Jones, Lustig, et. al. “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math. Prog., 1993
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Stabilized decomposition with “easy components”

Structured problem with “easy variables”:

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 +A2x2 = b

}
X 1 arbitrary, X 2 has compact convex formulation

Example: y ∈ { 0 , 1}|A| (Fixed-Charge MMCF)

Lagrangian function f (λ) = f 1(λ) + f 2(λ)(−λb), two components

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known
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“Easy components” in formulæ

Dual master problem: abstract form

(∆B,λ̄,D) min
{
b(λ̄+ d) + f 1

B (λ̄+ d) + f 2(x̄ + d) +D(d)
}

Primal master problem: abstract form

(ΠB,λ̄,D) max


c1x1 + c2(x2) + λ̄z −D∗(−z)

z = b − A1x1 − A2x2

x1 ∈ conv(B) , x2 ∈ X 2

and implementable form

(ΠB,ȳ ,D) max


c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2) + λ̄z −D∗(−z)

z = b − A1

(∑
x̄1∈B x̄1θx̄1

)
− A2x2∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g

(11)

Barring some details (do not translate f 1
B ), everything works16

16
F., Gorgone “Bundle methods for sum-functions with “easy” components [. . . ]” Math. Prog., 2014
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A taste of computational results

Flow relaxation of FC-MMCF (Y = { 0 , 1}|A|)
Several possible options:

fully aggregated (FA)

partly disaggregated with easy y (PDE)

disaggregated with difficult y (DD)

disaggregated with easy y (DE)

Stabilizing terms: ‖ · ‖∞, ‖ · ‖2
2 only for (FA) (exploiting 13)

Many forcing constraints (4) =⇒ dynamic generation needed17,18

Cplex DE
static dynamic static dynamic

54 10 44 32
315 54 233 48

1539 112 1234 29
2789 458 2227 65

17
F., Lodi, Rinaldi “New approaches for optimizing over the semimetric polytope” Math. Prog., 2005

18
Belloni, Sagastizábal “Dynamic Bundle Methods” Math. Prog., 2009
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Computational results: you have to do it all right

DE PDE DD FA-1 FA-2
time iter gap time iter gap time iter gap time iter gap time iter gap

32 77 1e-7 1000 2980 2e-2 1000 2714 2e-1 1000 1990 2e-1 410 14880 9e-7
48 30 3e-7 3000 2896 6e-2 3000 3720 7e-2 3000 7351 2e-1 1855 11141 3e-6
29 24 2e-7 9000 8370 2e-2 9000 5061 5e-2 9000 10918 1e-1 1254 9035 2e-6
65 20 3e-8 27000 5618 3e-2 27000 2148 4e-2 27000 5293 8e-2 1732 12940 1e-6

Most (stabilized) decompositions simply too slow to converge

To be efficient, you have to let information accumulate!

Optimal setting: maximum |B| = 50 · |K |, constraints violation
checked at every iteration, constraints never removed

opt 20 · |K | Rmv = 20 Sep = 10
time it gap time it gap time it gap time it gap

31.69 77 1e-7 289.41 841 7e-7 104.60 218 2e-7 72.96 194 1e-6
47.53 30 3e-7 3000.76 1585 3e-4 1564.82 803 4e-5 363.67 159 3e-7
28.98 24 2e-7 1125.93 726 4e-7 2585.05 796 1e-6 141.61 65 1e-6
65.31 20 3e-8 81.33 20 3e-8 17415.68 2121 8e-5 669.34 78 5e-7

trying to save on master problem cost a bad idea
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Once you do it all right
Cplex DE FA–2 FA–V

primal dual net. barr. 1e-6 1e-12 time f add it gap time f add it gap

12 10 11 15 32 64 410 12 7 14880 9e-7 3 0.6 0.5 875 9e-3
64 53 61 71 48 51 1855 19 16 11141 3e-6 6 1.2 1.2 842 2e-2

139 114 132 157 29 29 1254 32 20 9035 1e-6 12 2.3 2.2 796 3e-2
559 456 531 587 65 66 1732 100 67 12940 1e-6 26 5.1 5.0 760 4e-2

46 39 43 60 26 32 322 12 10 10320 1e-6 6 0.9 1.1 871 8e-3
147 132 144 209 28 56 294 15 9 5300 1e-6 12 2.1 2.4 831 9e-3
509 301 478 648 21 26 5033 169 155 27231 1e-6 26 4.5 5.4 794 3e-3

2329 1930 2302 2590 133 133 3122 192 169 14547 1e-6 51 8.6 10.6 760 4e-2

196 131 156 304 2 3 344 20 12 7169 1e-6 12 2.0 2.3 827 3e-3
926 708 862 1174 246 337 2256 111 118 17034 2e-5 29 5.0 6.1 869 1e-2

2706 2167 2542 3272 284 508 5475 192 249 15061 3e-6 58 9.2 13.0 817 2e-2
11156 8908 11675 11683 242 253 11863 349 413 13953 1e-6 109 16.7 24.1 765 2e-2

Fa–V: a FA with volume algorithm, quick but too coarse

More than an order of magnitude to Cplex as |A| and/or |K | grows

Can be extended to dynamic easy components19

19
F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013
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Motivation: knapsack decomposition

Relax the flow conservation constraints (2)

min
∑

(i , j)∈A
(∑

k∈K (ckij − πki + πkj )xkij + fijyij
)∑

k∈K dkxkij ≤ uijyij (i , j) ∈ A , k ∈ K

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K

y ∈ Y

Decomposes by arc if Y = { 0 , 1 }|A|, easy (≈ (continuous)
knapsack) but no integrality property =⇒ better bound

Still solvable with (appropriate) Y ⊂ { 0 , 1 }|A|: optimal x∗ij (π) gives
cost f ∗ij (π), then min{

∑
(i , j)∈A f ∗ij (π)yij : y ∈ Y }

However, Lagrangian function no longer separable: goodbye
disaggregate master problem, easy components, and all the rest

Still, the Lagrangian problem is somewhat separable

We want to “show this quasi-separability to the master problem”
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General setting: quasi-separable problems

Set of N quasi-continuous (vector) variables xi governed by yi

max dy +
∑

i∈N cixi (12)

Dy +
∑

i∈N Cixi = b (13)

Aixi ≤ biyi i ∈ N (14)

xi ∈ Xi i ∈ N (15)

y ∈ Y (16)

m linking constraints (13): Lagrangian relaxation

φ(λ) = λb+max
{

(d−λD)y+
∑

i∈N(ci−λCi )xi : (14) , (15) , (16)
}

solved with above two-stage procedure:

φi (λ) = max
{

(ci − λCi )xi : xi ∈ Xi

}
i ∈ N (17)

φ(λ) = λb + max
{ ∑

i∈N(di − λD i + φi (λ))yi : y ∈ Y
}

(18)
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Making it separable: the dumb way

(Un-stabilized) master problem is not disaggregate:

max
∑

(ȳ ,x̄)∈YX
(
dȳ +

∑
i∈N ci x̄i

)
θ(ȳ ,x̄) (19)∑

(ȳ ,x̄)∈YX
(
Dy +

∑
i∈N Cixi

)
θ(ȳ ,x̄) = b (20)∑

(ȳ ,x̄)∈YX θ(ȳ ,x̄) = 1 , θ(ȳ ,x̄) ≥ 0 (ȳ , x̄) ∈ YX (21)

To make it so also relax (14) with multipliers µ = [µi ]i∈N ≥ 0

φ(λ, µ) = λb + ψ(λ, µ) +
∑

i∈N ψi (λ, µi ) with (22)

ψi (λ, µi ) = max
{

(ci − λCi − µiAi )xi : xi ∈ Xi

}
(23)

ψ(λ, µ) = max
{ ∑

i∈N(di − λD i − µibi )yi : y ∈ Y
}

(24)

Many more multiplayers (|K ||A| in FC-MMCF), can easily destroy any
advantage due to separability
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Making it separable: the better way

“Easy component” version: Xi = convex combination, original Y

max dy +
∑

i∈N
∑

x̄i∈X̄i
(ci x̄i )θx̄i (25)

Dy +
∑

i∈N
∑

x̄i∈X̄i
(Ci x̄i )θx̄i = b (26)∑

x̄i∈X̄i
(Ai x̄i )θx̄i ≤ yi i ∈ N (27)∑

x̄i∈X̄i
θx̄i ≤ 1 (28)

y ∈ Y , θx̄i ≥ 0 x̄i ∈ X̄i , i ∈ N

(assuming 0 ∈ X̄i , but generalizes)

Nifty idea: replace (27)–(28) with∑
x̄i∈X̄i

θx̄i ≤ yi i ∈ N (29)

then relax (29) with multipliers µ = [µi ]i∈N ≥ 0 (much fewer now)

Multipliers are from master problem constraints (which they are . . . )

Non-easy component version obvious
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Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good because a similar approach has been
used for CFL20

We haven’t had the time to test this yet

It may be interesting to discuss a bit why . . . apart from the fact that
we are lazy Italians (and Quebecois), of course

20
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007
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It may be interesting to discuss a bit why . . . apart from the fact that
we are lazy Italians (and Quebecois), of course

20
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007
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Putting all this in practice

. . . easier said than done

Specialized implementations for one application “relatively easy”

General implementations for all problems with same structure harder:
it took ≈ 10 years from idea to paper for easy components
on top of existing, nicely structured C++ bundle code

Issue: extracting structure from problems

Issue: really using this in a B&C approach
≈ 20 years doing this well for Multicommodity Network Design

Especially hard: multiple nested forms of structure, reformulation

Current modelling/solving tools just don’t do it

So we are building our own under the auspices of plan4res

https://www.plan4res.eu/
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What We Want

A modelling language/system which:

explicitly supports the notion of block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables)

allows exploiting specialised solvers on blocks with specific structure

caters all needs of complex methods: dynamic generation of
constraints/variables, modifications in the data, reoptimization

C++ library: set of “core” classes, easily extendable

Why C++? A number of reasons:

all serious solvers are written in C/C++

we all love it (especially C++11/14)

tried with Julia/JuMP, but could not handle well C++ interface
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The Core SMS++

ObjectiveFunction

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

      abstract
representation
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Block

Block = abstract class representing the general concept of
“a part of a mathematical model with a well-understood identity”

Each Block:: a model with specific structure (e.g.,
Block::BinKnapsackBlock = a 0/1 knapsack problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., a, b, c)

Abstract representation of a Block:
one (for now) ObjectiveFunction

any # of groups of (pointers) to (static) Variable

any # of groups of std::list of (pointers) to (dynamic) Variable

any # of groups of (pointers) to (static) Constraint

any # of groups of std::list of (pointers) to (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . . ) or boost::multi array thanks to boost::any

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock can have k Block::MCFBlocks inside)
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Variable

Abstract concept, thought to be extended (a matrix, a function, . . . )

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Keeps the set of Constraint/ObjectiveFunction it influences

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

Modification::VariableModification (fix/unfix)
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Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . . )

Keeps the set of Variables it is influenced from

Either satisfied or not by the current value of the Variables

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

Modification::ConstraintModification (relax/enforce)

Frangioni, Gendron, Gorgone Separable Decomposition for Network Design Odysseus 2018 33 / 49



ObjectiveFunction

Abstract concept, perhaps to be extended (vector-valued . . . )

Either minimized or maximized

Keeps the set of Variables it depends from

Can be evaluated w.r.t. the current value of the Variables
(but its value depends on the specific form)

ObjectiveFunction::RealObjectiveFunction implements
“value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic ObjectiveFunction)

Modification::OFModification (change verse)
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Block and Solver

Any # of Solvers attached to a Block to solve it

Solver:: for a specific Block:: can use the physical representation
=⇒ no need for explicit Constraints
=⇒ abstract representation of Block only constructed on demand

However, Variables are always present (interface with Solver)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraints can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:
Variables not belonging to the Block are constants

Constraints not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

ObjectiveFunction of sub-Blocks summed to that of father Block
if has same verse, but min/max supported
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Solver

Solver = interface between a Block and algorithms solving it

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solvers can be attached to the same Block

Solutions are written directly into the Variables of the Block

Individual Solvers can be attached to sub-Blocks of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modifications

Heavily slanted towards RealObjectiveFunction

(optimality guarantees being upper and lower bounds)

Derived CDASolver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

Something relevant may be missing, asynchronous calls not clear yet
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Block and Modification

Most Block components can change, but not all:
set of sub-Blocks

number and shape of groups of Variables/Constraints

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solvers concerned

abstract Modification, only Solvers using it concerned

Abstract Modification on Variable/Constraint must always be
issued, even if no Solver, to keep both representations in sync

A single change may trigger more than one Modification

A Solver will disregard a Modification it does not understand
(there must always be another one it understands)

A Block may refuse to support some changes (explicitly declaring it)
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Modification

Almost empty base class, then everything has its own derived ones

Each change to Block/Variable/Constraint . . . produces a
Modification, and a smart pointer is passed to the Block

The Block funnels it to the interested Solvers (above, if any)

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraints)

Each Solver has the responsibility of cleaning up its list of
Modifications (smart pointers → memory will finally be released)

Modifications processed in the arrival order to ensure consistency

Solvers are supposed to reoptimize to improve efficiency, which is
easier if you can see all list of changes at once (lazy update)

A Solver may optimize the changes (Modifications may cancel
each outer out . . . ), but its responsibility
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Solution and Configuration

Block produces one Solution, possibly using its sub-Blocks’

A Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of the primal/dual solution

Block, Solution are tree-structured complex objects

Configuration for them a (possibly) tree-structured complex object
but also Configuration::SimpleConfiguration (an int)

Configuration::BlockConfiguration sets (recursively):

which dynamic Variable/Constraints are generated, how
(Solver, time limit . . . )

which Solvers attached to each sub-Block

which Solution is produced . . .
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R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone), should always work

Available R3Blocks Block::-specific, a Configuration needed

R3Block completely independent (new Variable/Constraints),
useful for algorithmic purposes (branch, fix, solve, . . . )

Solution of R3Block useful to Solvers for original Block:
map back solution() (best effort in case of dynamic Variables)

Sometimes keeping R3Block in sync with original necessary:
map forward modifications(), task of original Block

map forward solution() and map back modifications() useful,
e.g., dynamic generation of Variable/Constraints in the R3Block

Block:: is in charge of all this, thus decides what it supports
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First Basic Implementations

Variable::ColVariable implements “value = one single real”,
possibly restricted to Z, with (possibly infinite) bounds

Modification::ColVariableModification (change bounds, type)

Constraint::RowConstraint implements “l ≤ a real ≤ u”

Has dual variable attached to it (single real)

Modification::RowConstraintModification (change l , u)

RowConstraint::FRowConstraint: “a real” given by a Function

RealObjectiveFunction::FRealObjectiveFunction:
“value” given by a Function
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Function

LagrangianFunction

{ LinearFunction }Block

Function C05Function C15Function

LinearFunction
BendersFunction

...

DSepQFunction

PolynomialFunction

...

Function only deals with (real) values

Approximate computation supported in a quite general way21

Asynchronous evaluation still not defined

Handles set of Variables upon which it depends

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variables)

21
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018
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C05Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . . )

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports Hessians, unclear how much reoptimization
possible/useful
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LagrangianFunction

C05Function::LagrangianFunction has one isolated Block

+ set of (so far) LinearFunction to define Lagrangian term

evaluate() = Block.get registered solvers()[ i ].solve():
asynchronous Solver =⇒ asynchronous Function

Solutions extracted from Block ≡ linearizations

Solver provides local pool

LagrangianFunction handles global pool

All changes lead to reoptimization-friendly Modification

BendersFunction should be quite similar
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Other useful stuff

un any thing() template functions/macros to extract
(std::vector or boost::multi array of) (std::list of)
Variable/Constraints out of a boost any and work on that

Solution::ColVariableSolution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

Solution::RowConstraintSolution uses the abstract
representation of any Block that only have (. . . ) RowConstraints to
read/write the dual solution

Of course, Solution::CVFRSolution . . .

Solver::MILPSolver solves with Cplex any Block that only has
(. . . ) ColVariables, FRowConstraints and
FRealObjectiveFunction with LinearFunctions
(uses the abstract representation)
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Application to Multicommodity flows

NDOSolver

Bundle Subgradient ...

Block2Block1 ...

MMCFBlockMMCFFlwDcmpBlock

FiOracle

get_R3_Block()

OF
LagrangianFunction

Block

map_back_solution()

linear functions
...

MCFBlock MCFSolver MCFClass

SPTree

MCFSimplex
...

MCFBlock2

MCFBlock1

...

NetDesBlock

Different reformulations from same basic Block

Streamlined interface with decomposition solvers

General decomposition-based B&B now (perhaps) possible
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A Lot of Work, Then Maybe Conclusions

Decomposition for Multicommodity flows a very old idea, yet
a lot of work required to make it efficient

Crucial aspect: large, structured master problems

Our proposal: yet another large, structured master problem

Huge challenge: make these techniques mainstream

(at least, less desperately bleeding-edge)

A new hope: structured modelling system

Alpha version, not all the features you have seen are complete

Design principles have kept evolving, new ideas continue to crop up

Core nicely general, but only success in applications validate it

Overhead still largely unknown (although C++ efficient)

Asynchronous still to be figured out (but very relevant)

Not for the faint of heart, but we are trying. Someone cares to join?
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