
Multiple Nested Structures:
the Curse (or Blessing?) of Applied Mathematics

Antonio Frangioni1

1Dipartimento di Informatica, Università di Pisa

Calcolo Scientifico e Modelli Matematici:
Alla Ricerca delle Cose Nascoste
Attraverso le Cose Manifeste 2.0

17 Maggio 2018 – Como

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 2 / 48

Structure in Optimization Problems

General optimization problem (P) min
{
c(x) : x ∈ X

}
:

clearly unsolvable if c(·) and X are “any” function/set

To do anything one needs assumptions on the structure of c(·)/X

Many different cases, most of them hard

Let’s take it easy: strong structure ≡ easy problem:

Linear Program (P) min
{
cx : Ax = b , 0 ≤ x ≤ u

}
A ∈ Rn×m (sparse), b ∈ Rn, c ∈ Rm, u ∈ Rm, m > n

Structure =⇒ useful properties: dual problem to (P)

(D) max
{
yb − wu : yA + z − w = c , z ≥ 0 , w ≥ 0

}
fundamental tool for solving (P)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 3 / 48

Solving LPs is (Structured, non)Linear Algebra

Karush-Kuhn-Tucker optimality conditions (diag(V) = v , e = all 1s)

(KKT)

Ax = b , x + s = u , yA + z − w = c (linear)

XZe = 0 , SWe = 0 (nonlinear)

[x , s , z , w]≥ 0 (inequalities)

Interior Point methods for LP: “slacken + linearize”:

i) µ > 0, (KKTµ) ≡ (KKT) except XZe = µe , SWe = µe

=⇒ (2mµ)-optimal solution

ii) feasible [x̄ , s̄ , z̄ , w̄]> 0, v = v̄ + ∆v (stepsize ensures v > 0) =⇒{
A∆x = 0 , ∆x + ∆s = 0 , ∆yA + ∆z −∆w = 0

X̄ Z̄ e + X̄∆z + Z̄∆x = µe , S̄W̄ e + S̄∆w + W̄∆s = µe

ignore second-order terms ≡ Newton’s method for nonlinear equations

[x̄ , s̄ , z̄ , w̄] satisfies (KKTµ): one iteration, µ↘ (fast), repeat

Many improvements (infeasible method, predictor corrector, . . .)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 4 / 48

Solving LPs is Structured Linear Algebra

Boils down to Reduced KKT or Normal equations (Θ > 0 diagonal)[
−Θ AT

A 0

]
AΘAT

m + n ×m + n, sparse n × n, a lot less sparse

Special case of Saddle-Point system, lots of applications (physics,
engineering, economy, computer science, . . .), very active research1

Specific twists in the LP case:

large size: m ≈ 106+, n ≈ 105+ . . .

must be solved many times, but rather inexactly (at the first iterations)

fixed nonzero structure (A) and variable data (Θ)

special evolution of data over the iterations

no discretization, no underlying smooth operator

Ultimate performances require assumptions on (structure of) A

1
Benzi, Golub, Liesen “Numerical solution of saddle point problems” Acta Numerica 14, 1–137, 2005

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 5 / 48

Going Deeper: More Assumptions (≡ Structure)

A = node-arc incidence matrix of directed graph G

i

j

(i, j)

-1

1
A

j

i

≡ min-cost flow problem

≡ AΘAT weighted Laplacian of G
(an M-matrix)

Can tell a lot on the system by looking at the graph2,3

Can do a lot about the system by working on the graph:

preconditioners are (chordal) sub-graphs, can be obtained by
efficient graph algorithms (Kruskal4, Prim5, . . .)

projection in algebraic multigrid is merging nodes6

projection and preconditioning is a unique graph-based process7

2
Cvetković, Doob, Sachs “Spectra of graphs”, 1980 — Brouwer, Haemers “Spectra of Graphs”, 2012

3
F., Serra Capizzano “Spectral Analysis of (Sequences of) Graph Matrices” SIMAX, 2001

4
F., Gentile “New Preconditioners for KKT Systems of Network Flow Problems” SIOPT, 2004

5
F., Gentile “Prim-based Support-Graph preconditioners for Min-Cost Flow Problems” CO&A, 2006

6
Dell’Acqua, F., Serra Capizzano “Computational Evaluation of Multi-Iterative Approaches [. . .]” CALCOLO, 2015

7
Dell’Acqua, F., Serra Capizzano “Accelerated Multigrid for Graph Laplacian Operators” Appl. Math. & Comp., 2015

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 6 / 48

Lots of Fun for Lots of Different People

These systems have been approached by many different angles:

graph theory

computer science

numerical linear algebra

optimization

physics . . .

Lots of ingenuity, theoretical results, implementations

Applied mathematics at its best: focus on one structure with
relevant applications, drill it down until it cries

Is this always enough?

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 7 / 48

Lots of Fun for Lots of Different People

These systems have been approached by many different angles:

graph theory

computer science

numerical linear algebra

optimization

physics . . .

Lots of ingenuity, theoretical results, implementations

Applied mathematics at its best: focus on one structure with
relevant applications, drill it down until it cries

Is this always enough?

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 7 / 48

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 8 / 48

Motivation: The Unit Commitment (UC) problem

Schedule a set of generating units U over a set of time instants T to
satisfy the (forecasted) demand dt at each t ∈ T

Come sarà organizzato

 import

 (self)producer1

 producer2

distribution network

 large user1

market management

 producerk

 dealer1

 dealer2

 dealerh

 user pool1

 large userp

residential users

 export

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 9 / 48

The Unit Commitment problem

Gazzillions eee / $$$, enormous amount of research8,9

What has it to do with networks? More than it would seem

Different types of production units, different constraints:

Thermal (comprised nuclear): min/max production, min up/down
time, ramp rates on production increase/decrease, start-up cost
depending on previous downtime, others (modulation, . . .)

Hydro (valleys): min/max production, min/max reservoir volume, time
delay to get to the downstream reservoir, others (pumping, . . .)

Non programmable (ROR hydro) intermittent units (solar/wind, . . .)

Fancy things (small-scale storage, demand response, smart grids, . . .)

Plus the interconnection network (AC/DC, transmission/distribution)

8
van Ackooij, Danti Lopez, F., Lacalandra, Tahanan “Large-scale Unit Commitment Under Uncertainty [. . .]” AOR, 2018

9
The plan4res project: https://www.plan4res.eu/

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 10 / 48

https://www.plan4res.eu/

Thermal Units

Again, what did this have to do with graphs, please?

Specialized DP algorithms for thermal single-Unit Commitment10

≡ shortest path on appropriate acyclic graph

OFF

ON

3 4 5

d

1 2 T

. . .

Not too many nodes 2(T = |T |), but rather dense: O(T 2) arcs

((t , ON) , (τ , OFF)) ≡ startup at t and shutdown at τ > t . . .

Costs require another nested DP per arc, O(T 3) overall

Hence, (strong but large) formulation as a flow problem11

10
F., Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” OR, 2006

11
F., Gentile “New MIP Formulations for the Single-Unit Commitment Problems with Ramping Constraints” IASI 15-06, 2015

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 11 / 48

Hydro Units

Water flowing over time is a flow problem (surprise!)

3 4 5 d1 2 T
. . .

Quite skinny graph, O(T) nodes and arcs, too

Turbining/spilling arcs produce/not energy (max reservoir capacity)

However, hydro units are often whole interconnected hydro valleys

3 4 5 d1 2 T
. . .

d
. . .

. . .

All in all (without pumping) still a flow problem, on a
structured graph (composition of lines with a reverse tree)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 12 / 48

The Network

The transmission/distribution network is a graph (surprise!)

nodes are zones/buses, arcs are links (bi-directed)

Kirchhoff’s current law: Af = n (f = flows, n = net injection)

Kirchhoff’s voltage law + Ohm’s law for AC current =⇒ f = γTAT θ
(θ = voltage angles, γ = arc susceptances = 1/ impedence)

AC =⇒ currents and voltages are periodic ≡ complex numbers

DC approximation: | θi − θj | � 1 (i , j) ∈ A (small phase differences
between neighbours) =⇒ can linearize the trigonometric functions

AΓAT θ = n (Laplacian!) + f ≤ γTAT θ ≤ f̄ (capacity)

Fixing one reference voltage AΓAT nonsingular:

f ≤ γTAT (AΓAT)−1n ≤ f̄

True AC version nonlinear nonconvex, rater hard . . .

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 13 / 48

Putting it all together

Not a single flow but a multicommodity flow (of sorts)

Many blocks, either A or AΓAT , but of rather different shape and size

Nontrivial linking constraints

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 14 / 48

Can We Deal With Such a Structure?

Of course we can, in fact with several different approaches:

Lagrangian decomposition12 and related methods13, even in parallel14

Structured Interior-Point methods15

Structured active-set (simplex) methods16

Structured Dantzig-Wolfe decomposition17,18

. . .

Most can exploit the “inner” graph structure of (the many) A(s)

Significantly more complex: two-level approaches (≡ more fun)

12
F., Gallo “A Bundle type dual-ascent approach to linear multicommodity min cost flow problems” INFORMS JOC, 1999

13
Grigoriadis, Khachiyan “An exponential function reduction method for block angular convex programs” Networks, 1995

14
Cappanera, F. “Symmetric and asymmetric parallelization of a cost-decomposition algorithm [. . .]” INFORMS JOC, 2003

15
Castro “Solving difficult multicommodity problems through a specialized interior-point algorithm” Ann. OR, 2003

16
McBride “Progress made in solving the multicommodity flow problem” SIOPT, 1998

17
F., Gendron “A stabilized structured dantzig-wolfe decomposition method” Math. Prog., 2013

18
Mamer, McBride “A decomposition-based pricing procedure for large-scale linear programs [. . .]” Man. Sci., 2000

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 15 / 48

Is All Well in Structure Land, Then?

Maybe if this were the end, but it is just the beginning

Data is uncertain: demand, wind/solar production, units/network
state . . . which cannot be ignored (increased RES penetration . . .)

Unit commitment is decided in advance (here-and-now) but actual
dispatch can be changed in real time (recourse)

Many methods to represent uncertainty: Stochastic Optimization19,
Robust Optimization, Chance-Constrained Optimization, hybrid20

Simplest approach scenario-based: each ≈ a full UC

=⇒ yet another two-level structure

Cons: size increases of a factor # scenarios (which should be large)

19
Scuzziato, Finardi, F. “Comparing Spatial and Scenario Decomposition for Stochastic [. . .]” IEEE Trans. Sust. En., 2018

20
van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches, with Application [. . .]” CO&A, 2016

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 16 / 48

Scenario-based Structure

Perfect structure for Benders’ decomposition

Benders’ decomposition with Lagrangian decomposition inside21

. . . with (different) graph structure(s) inside

21
van Ackooij, Malick “Decomposition algorithm for large-scale two-stage unit-commitment” Ann. OR, 2016

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 17 / 48

An Aside (not really): Reformulation

Or was it the perfect structure for Lagrangian decomposition?

Lagrangian decomposition with Lagrangian decomposition inside . . .

Which is better? Very hard to say beforehand19

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 18 / 48

OK, This is Two-Level Decomposition, Then?

Unit-Commitment is a short-term problem, lacks long-term strategies

Issue: cost of water (none) / minimum reservoir volume (very low)

=⇒ lot of water used =⇒ no water most of the year

Hydro production most useful for peak shaving every day

Computing value of water left in the reservoirs at T

≡ solving a parametric (uncertain) UC problem

for each (significant) day of the year

Can approximate it by dual variables/Lagrangian multipliers of
minimum reservoir volume constraints

Better a piecewise linear representation (cutting-plane model)

Then, stochastic dual dynamic programming22 (another graph)

22
Pereira, Pinto “Multi-stage stochastic optimization applied to energy planning” Math. Prog., 1991

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 19 / 48

Complete Tactical Problem

This is not really how you’d do that (integer variables)

Still OK for Benders-like decomposition

Benders + Benders + Lagrange + Graph or

Benders + Lagrange + Lagrange + Graph or

Lagrange + Benders + Lagrange + Graph or . . .

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 20 / 48

OK, But This Surely is The End, Right?

The energy system changes all the time, but

modifications slow, extremely costly, with huge inertia

Demand and production subject to very significant uncertainties:

climate = RES production + demand, shifts in consumption patterns

(EV, cryptocurrencies, . . .), new technologies (shale, LED, . . .),

geo-political factors (energy security), economical factors

(boost or boom), regulatory factors (EU energy market, . . .),

political factors (CO2 emission treaties, nuclear power, . . .), . . .

Planning long-term evolution very hard, yet necessary

20/30 years, 2/5 years steps (multi-level recourse), many scenarios

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 21 / 48

Complete Strategic Problem

Huge size, multiple nested structure

Still OK for either Benders or Lagrange

Benders + Lagrange + Benders + Lagrange + Graph or . . .

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 22 / 48

How Do you Solve Such a Thing?

Modeling system: easily construct a huge, flat = unstructured matrix
to be passed to a general-purpose, flat solver

Some solvers offer one-level decomposition (Benders, CG = DW)

Attempts at automatically recovering structure from a matrix23, but
only one level and anyway conceptually awkward

Only one tool (that I know of) for multiple nested structure24,25, but
only solves continuous problems by Interior Point methods

Nothing for multilevel, heterogeneous approaches (such as, but not
only, decomposition), e.g., allowing specialized solvers for each block

So far

23
Gamrath, Lübbecke “Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs” LNCS, 2010

24
Gondzio, Grothey “Exploiting Structure in Parallel Implementation of Interior Point Methods [. . .]” Comput. Man. Sci., 2009

25
Colombo et al. “A Structure-Conveying Modelling Language for Mathematical [. . .] Programming” Mathe. Prog. Comp., 2009

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 23 / 48

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 24 / 48

What We Want

A modelling language/system which:

explicitly supports the notion of block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables)

allows exploiting specialised solvers on blocks with specific structure

caters all needs of complex methods: dynamic generation of
constraints/variables, modifications in the data, reoptimization

C++ library: set of “core” classes, easily extendable

Why C++? A number of reasons:

all serious solvers are written in C/C++

we all love it (especially C++11/14)

tried with Julia/JuMP, but could not handle well C++ interface

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 25 / 48

The Core SMS++

ObjectiveFunction

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 26 / 48

Block

Block = abstract class representing the general concept of
“a part of a mathematical model with a well-understood identity”

Each Block:: a model with specific structure (e.g.,
Block::BinKnapsackBlock = a 0/1 knapsack problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., a, b, c)

Abstract representation of a Block:
one (for now) ObjectiveFunction

any # of groups of (pointers) to (static) Variable

any # of groups of std::list of (pointers) to (dynamic) Variable

any # of groups of (pointers) to (static) Constraint

any # of groups of std::list of (pointers) to (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array thanks to boost::any

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock can have k Block::MCFBlocks inside)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 27 / 48

Variable

Abstract concept, thought to be extended (a matrix, a function, . . .)

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Keeps the set of Constraint/ObjectiveFunction it influences

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

Modification::VariableModification (fix/unfix)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 28 / 48

Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . .)

Keeps the set of Variables it is influenced from

Either satisfied or not by the current value of the Variables

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

Modification::ConstraintModification (relax/enforce)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 29 / 48

ObjectiveFunction

Abstract concept, perhaps to be extended (vector-valued . . .)

Either minimized or maximized

Keeps the set of Variables it depends from

Can be evaluated w.r.t. the current value of the Variables
(but its value depends on the specific form)

ObjectiveFunction::RealObjectiveFunction implements
“value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic ObjectiveFunction)

Modification::OFModification (change verse)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 30 / 48

Block and Solver

Any # of Solvers attached to a Block to solve it

Solver:: for a specific Block:: can use the physical representation
=⇒ no need for explicit Constraints
=⇒ abstract representation of Block only constructed on demand

However, Variables are always present (interface with Solver)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraints can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:
Variables not belonging to the Block are constants

Constraints not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

ObjectiveFunction of sub-Blocks summed to that of father Block
if has same verse, but min/max supported

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 31 / 48

Solver

Solver = interface between a Block and algorithms solving it

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solvers can be attached to the same Block

Solutions are written directly into the Variables of the Block

Individual Solvers can be attached to sub-Blocks of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modifications

Heavily slanted towards RealObjectiveFunction

(optimality guarantees being upper and lower bounds)

Derived CDASolver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

Something relevant may be missing, asynchronous calls not clear yet

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 32 / 48

Block and Modification

Most Block components can change, but not all:
set of sub-Blocks

number and shape of groups of Variables/Constraints

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solvers concerned

abstract Modification, only Solvers using it concerned

Abstract Modification on Variable/Constraint must always be
issued, even if no Solver, to keep both representations in sync

A single change may trigger more than one Modification

A Solver will disregard a Modification it does not understand
(there must always be another one it understands)

A Block may refuse to support some changes (explicitly declaring it)
A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 33 / 48

Modification

Almost empty base class, then everything has its own derived ones

Each change to Block/Variable/Constraint . . . produces a
Modification, and a smart pointer is passed to the Block

The Block funnels it to the interested Solvers (above, if any)

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraints)

Each Solver has the responsibility of cleaning up its list of
Modifications (smart pointers → memory will finally be released)

Modifications processed in the arrival order to ensure consistency

Solvers are supposed to reoptimize to improve efficiency, which is
easier if you can see all list of changes at once (lazy update)

A Solver may optimize the changes (Modifications may cancel
each outer out . . .), but its responsibility

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 34 / 48

Solution and Configuration

Block produces one Solution, possibly using its sub-Blocks’

A Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of the primal/dual solution

Block, Solution are tree-structured complex objects

Configuration for them a (possibly) tree-structured complex object
but also Configuration::SimpleConfiguration (an int)

Configuration::BlockConfiguration sets (recursively):

which dynamic Variable/Constraints are generated, how
(Solver, time limit . . .)

which Solvers attached to each sub-Block

which Solution is produced . . .

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 35 / 48

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone), should always work

Available R3Blocks Block::-specific, a Configuration needed

R3Block completely independent (new Variable/Constraints),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solvers for original Block:
map back solution() (best effort in case of dynamic Variables)

Sometimes keeping R3Block in sync with original necessary:
map forward modifications(), task of original Block

map forward solution() and map back modifications() useful,
e.g., dynamic generation of Variable/Constraints in the R3Block

Block:: is in charge of all this, thus decides what it supports

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 36 / 48

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 37 / 48

First Basic Implementations

Variable::ColVariable implements “value = one single real”,
possibly restricted to Z, with (possibly infinite) bounds

Modification::ColVariableModification (change bounds, type)

Constraint::RowConstraint implements “l ≤ a real ≤ u”

Has dual variable attached to it (single real)

Modification::RowConstraintModification (change l , u)

RowConstraint::FRowConstraint: “a real” given by a Function

RealObjectiveFunction::FRealObjectiveFunction:
“value” given by a Function

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 38 / 48

Function

LagrangianFunction

{ LinearFunction }Block

Function C05Function C15Function

LinearFunction
BendersFunction

...

DSepQFunction

PolynomialFunction

...

Function only deals with (real) values

Approximate computation supported in a quite general way26

Asynchronous evaluation still not defined

Handles set of Variables upon which it depends

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variables)

26
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 39 / 48

C05Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . .)

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports Hessians, unclear how much reoptimization
possible/useful

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 40 / 48

LagrangianFunction

C05Function::LagrangianFunction has one isolated Block

+ set of (so far) LinearFunction to define Lagrangian term

evaluate() = Block.get registered solvers()[i].solve():
asynchronous Solver =⇒ asynchronous Function

Solutions extracted from Block ≡ linearizations

Solver provides local pool

LagrangianFunction handles global pool

All changes lead to reoptimization-friendly Modification

BendersFunction should be quite similar

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 41 / 48

Other useful stuff

un any thing() template functions/macros to extract
(std::vector or boost::multi array of) (std::list of)
Variable/Constraints out of a boost any and work on that

Solution::ColVariableSolution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

Solution::RowConstraintSolution uses the abstract
representation of any Block that only have (. . .) RowConstraints to
read/write the dual solution

Of course, Solution::CVFRSolution . . .

Solver::MILPSolver solves with Cplex any Block that only has
(. . .) ColVariables, FRowConstraints and
FRealObjectiveFunction with LinearFunctions
(uses the abstract representation)

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 42 / 48

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 43 / 48

UCBlock and Companion Classes

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 44 / 48

UCLagrangianBlock

NDOSolver

Bundle Subgradient ...

Block2
Block1 ...

UCBlock

UCLagrangianBlock

FiOracle

get_R3_Block()

OF
LagrangianFunction

Block

map_back_solution()

piece of demand constraints
...

AcadThermalUnitBlock 1UCDPSolver

Independent from details of units/network

Multi-level decomposition now (perhaps) possible

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 45 / 48

Outline

1 Structure: top-down

2 Structure: bottom-up

3 The Core Elements of SMS++

4 The quasi-Core Elements of SMS++

5 Example: SMS++ for the Unit Commitment

6 Conclusions and (a Lot of) Future Work

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 46 / 48

A Lot of Work, Then Maybe Conclusions

Alpha version, not all the features you have seen are complete

Design principles have kept evolving, new ideas continue to crop up

Core nicely general, but only success in applications validate it

Heavily slanted towards optimization, useful for numerical analysis?

Really 6= from all I’ve seen so far, had to invent almost everything

Overhead still largely unknown (although C++ efficient)

Asynchronous still to be figured out (but very relevant)

Clearly not for the faint of heart . . .

but when it’ll work it will be useful in many applications

Implementing general, flexible methods for heterogeneous, multi-level
structured problems is highly complex, have to make the tools first

We are trying. Someone cares to join?

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 47 / 48

A Lot of Work, Then Maybe Conclusions

Alpha version, not all the features you have seen are complete

Design principles have kept evolving, new ideas continue to crop up

Core nicely general, but only success in applications validate it

Heavily slanted towards optimization, useful for numerical analysis?

Really 6= from all I’ve seen so far, had to invent almost everything

Overhead still largely unknown (although C++ efficient)

Asynchronous still to be figured out (but very relevant)

Clearly not for the faint of heart . . .
but when it’ll work it will be useful in many applications

Implementing general, flexible methods for heterogeneous, multi-level
structured problems is highly complex, have to make the tools first

We are trying. Someone cares to join?

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 47 / 48

Acknowledgements

Copyright c© PLAN4RES Partners 2018, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the PLAN4RES Consortium. In

addition, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for

any use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

A. Frangioni (DI — UniPi) Multiple Nested Structures in AM Como ’18 48 / 48

	Structure: top-down
	Structure: bottom-up
	The Core Elements of SMS++
	The quasi-Core Elements of SMS++
	Example: SMS++ for the Unit Commitment
	Conclusions and (a Lot of) Future Work

