
Università di Pisa
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Abstract

We review the basic ideas underlying the vast family of algorithms for nonsmooth convex opti-
mization known as “bundle methods”. In a nutshell, these approaches are based on constructing
models of the function, but lack of continuity of first-order information implies that these models
cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization
have been proposed to try to avoid being led to areas where the model is so inaccurate as to result
in almost useless steps. In the development of these methods, duality arguments are useful, if not
outright necessary, to better analyze the behaviour of the algorithms. Also, in many relevant applica-
tions the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts
and results into a “primal space” where they can be exploited; in turn, structure in that space can
be exploited to improve the algorithms’ behaviour, e.g. by developing better models. We present an
updated picture of the many developments around the basic idea along at least three different axes:
form of the stabilization, form of the model, and approximate evaluation of the function.

Keywords: Nonsmooth optimization, bundle methods, stabilization, decomposition, Lagrangian re-
laxation, duality, inexact function evaluation, incremental approach, survey

1 Introduction

We will describe the general ideas behind a large class of algorithms for the convex minimization problem

f∗ = min{ f(x) : x ∈ X } , (1)

where f : Rn → R is proper and convex but possibly nondifferentiable. Problem (1) is quite general
because of the “minimal” assumptions on how f is provided: any computational procedure (an oracle)
that, given x, returns the value f(x) and information about the first-order behaviour of f at x under the
form of a subgradient z ∈ ∂f(x) (both can actually be approximated, cf. §5). As far as the feasible set X
is concerned, the usual assumption is that, roughly speaking, it is not making the problem significantly
more complex than what the unconstrained version would be; details are given in §4.3, but on first reading
one may imagine X as defined by a “small” set of explicitly known linear/conic constraints. To simplify
the notation, for most of this work we will take X = Rn; the modifications required to extend the ideas
to the constrained case are, usually, simple enough as to be better introduced separately from the main
analysis. We immediately remark, however, that allowing for constraints is important in that it makes it
possible to deal with extended-valued f , i.e., dom f ⊂ Rn. In the simplest case, if only feasible iterates
are produced and, say, X ⊂ int dom f , then f is just never evaluated at points x where f(x) = ∞.
It is actually possible to allow this to happen, but the oracle for f then has to provide appropriate
information. In other words, we can view (1) as the unconstrained minimization of the essential objective
fX = f + ıX , where ıX is the indicator function of X; then, besides an oracle for the finite-valued f , we
will need a—necessarily, somewhat different—oracle for the extended-valued ıX . For most this work f
will therefore be intended as finite-valued, with the other case discussed in §4.3.

The basic idea behind all Bundle Methods (BM) is that, being them iterative algorithms, they will
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construct a sequence {xi } of iterates, hopefully converging towards some optimum x∗ of (1). The oracle
will be called at the points xi, producing the corresponding sequence of pairs { ( f(xi) , zi ∈ ∂f(xi) ) }.
Unlike algorithms for smooth optimization, that can work keeping information about a very restricted
set of iterates—possibly even only the last one—BM have to resort to ideally collect and store all the
previously generated information to work, although compression and selection procedures can usually
be implemented (cf. §3.2). For a number of reasons to become apparent in due time, one customarily
replaces f(xi) with αi = 〈zi,xi〉− f(xi) to define the (lower) bundle B = { ( zi , αi ) }. Then, the cutting
plane model

f̌B(x) = max
{
〈zb,x〉 − αb : b ∈ B

}
(2)

(with the useful shorthand “b ∈ B” for “(zb , αb ) ∈ B”) is a global lower model for f , i.e., f̌B ≤ f . Upon
first reading one may assume b = i; however, in general not all pairs in B are directly related with an
iterate, as we shall see, whence the different index. Also, since B changes at each iteration it must be
denoted as Bi which, if nothing else, justifies using a different index for its elements; we will try to simplify
notation as much as possible by using, e.g., f̌ i in place of f̌Bi . Note that (2) does not use (and hence B
does not need to store) the original iterates xi, which is already a sufficient rationale for introducing the
αb; however, f̌B is not the only possible (lower) model of f , and some of them actually do require storing
the iterates (cf. §4.4). It is in general useful to avoid as much as possible to detail which (lower) model
one uses, so that different ones can be employed (cf. §4); we will therefore generically indicate the model
as fB, although fB = f̌B is by far the most common choice.

With fB at hand, the obvious idea is to directly use it to guide the selection of the new iterate. That
is, the iterative scheme

xi ∈ argmin
{
f i(x) : x ∈ X

}
, (3)

reminiscent of the most successful algorithms for nonlinear optimization, immediately springs to mind.
Of course, the new pair ( zi , αi = 〈zi,xi〉− f(xi) ) is then added to Bi; on first reading one may assume
that no information is ever removed from Bi. With f i = f̌ i this is the Cutting Plane Method (CMP) [60],
whose attractive feature is that (3) can be written as

(xi , vi ) ∈ argmin
{
v : v ≥ 〈zb,x〉 − αb b ∈ Bi , x ∈ X

}
, (4)

i.e., an LP if X is a polyhedron and in general a problem that looks “easy enough” to solve, at least if |Bi|
is “not too large”. The formulation also highlights how the natural space for the Master Problem (MP)
(3)/(4) is the epigraphical space of f , with the extra variable v accounting for f -values (and vi = f i(xi)).
It is not surprising that the CPM is globally convergent, given that any convex function is the supremum
of all its affine minorants; the proof, however, is short and instructive enough to be worth reporting.

Theorem 1 If the level sets of the initial model f̌1 are bounded, then {xi } in the CPM (weakly) con-
verges to an optimal solution x∗ of (1).

Proof. As Bi+1 ⊇ Bi, f̌ i is monotonically nondecreasing in i, hence so are its level sets. Thus, them
being bounded for i = 1 means they are always so, which makes (3) always well defined. Since f̌ i ≤ f ,
this means that f∗ ≥ vi > −∞, and { vi } is clearly nondecreasing as well. Then, the nonincreasing record
value f irec = min{ f(xj) : j = 1, . . . , i } can be used to define the nonincreasing gap gi = f irec − vi ≥ 0.
The aim is proving that gi → 0, which, via f irec ≥ f∗ ≥ vi, immediately implies f irec → f∗, and
therefore that, extracting subsequences if necessary, {xi } → x∗: in fact, f1 ≥ f irec ≥ vi, i.e., xi ∈
lev( vi , f i ) ⊆ lev( v1 , f1 ), hence {xi } is a bounded sequence. This implies that { zi } is also bounded,
as the image of a compact set under the subdifferential mapping is compact [57, Proposition XI.4.1.2].
Hence, assume gi ≥ ε > 0: for each j < i, f(xj) ≥ f irec and f̌ i(xi) ≥ f(xj) + 〈zj ,xi − xj〉, which gives
0 > −ε ≥ 〈zj ,xi − xj〉. Taking a subsequence if necessary ‖xi − xj‖ → 0; since ‖zj‖ is bounded the
right-hand side has to converge to zero, yielding the desired contradiction.

A nice feature of the above proof is that constraints x ∈ X do not even need to be mentioned; a
compact X is actually advantageous, in that compactness of lev( f̌1 , · ) is clearly no longer required
(lev( f̌1 +ıX , · ) are surely compact). But for this aspect, even a cursory glance at the proof immediately
suggest that the prototypical CPM is fraught with computational issues. First, it requires B to start
“large enough” so that the model f̌B is bounded below and (3) is well-defined, which is not trivial unless
X is compact. Furthermore, there is no apparent way to control the size of Bi by removing “outdated”
information. Already keeping compactness of the level sets while removing elements from Bi is nontrivial.
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Even worse, there seem to be no way to detect whether an iterate xi belongs or not to the convergent
subsequence crucial in the argument. Indeed, it is easy to prove that “apparently reasonable” removals
can lead to cycling, as the following example shows.

Example 1 Consider Figure 1, where f is the pointwise maximum of the three linear functions (a), (b)
and (c), to be minimized over X = [xa , xb ] (compact). With B1 = { (c) }, assume (3) returns x1 = xa,
yielding B2 = { (a) , (c) }. Now assume (3) returns x2 = xb, so that (b) is added to B2. In this moment
it would seem harmless to delete (a) from B1: the linearization has been obtained in xa, hence “very far”
from the current x2, and it is not active (it does not contribute to defining f̌2(x2)). However, doing so
opens the possibility that subsequently x3 = xa with (b) being removed from B3, yielding a cycle. The
example may seem to hinge on the fact that the linearization (c) belongs to B without having been produced
by the oracle, and therefore without having produced the corresponding function value which contributes
to the record value. This may actually happen (cf. §5), but one may easily extend the example by adding
another dimension and having (c) as the intersection of two linearizations, computed (exactly) at different
points.

f

xxa xb

(a) (b
)

(c)

Figure 1: Example of the CPM cycling

Besides illustrating the difficulty in managing B, the previous example also shows what is perhaps the
most damning characteristic of the CPM: the approach is inherently unstable, with subsequent iterates
possibly “very far” from each other. This is known to cause slow convergence, as clearly illustrated by
the following experiment. A problem is solved by the CPM, with arbitrary initial iterate (x1 = 000) and
B1 = ∅, and the optimal solution x∗ is recorded. Then, the problem is solved again, this time with
x1 = x∗ and adding to the MP in (3) the constraint ‖x− x∗‖∞ ≤ δ for some δ, but still taking B1 = ∅.
The results are reported in Table 1, where “r.it.” is the ratio between the number of iterations required
by the CPM with the added constraint, for the given value of δ, and these of the initial CPM. To avoid
unboundedness problems at early iterations, and for extra fairness, the MP of the CPM is actually solved
with an extra constraint ‖x‖∞ ≤ 1e+4; since ‖x∗‖∞ ≈ 1, this does not impact the correctness of the
CPM.

Table 1: A conceptual experiment illustrating instability of the CPM

δ 1e+4 1e+2 1e+0 1e−2 1e−4 1e−5 1e−6

r.it. 1.07 1.12 0.86 0.77 0.56 0.19 0.04

Although these results are for a specific instance (the Lagrangian dual of a small-scale randomly
generated nonempty and bounded LP), they are quite typical. Knowledge of x∗, when only used to
choose x1 = x∗, is basically useless: the CPM will not perform significantly less iterations, and may
easily do more. Restricting the search in a box around x∗ can improve convergence, but only if the
box is small enough. With a very small box, improvements of about two orders of magnitude are not
unusual. All this starkly contrast with efficient algorithms for smooth optimization; ran with a starting
point close to x∗, these would converge extremely fast due to the use of second-order models having
very good approximations of the curvature information at the optimum. A piecewise-linear fB such

as f̌B has no inherent curvature information, and therefore has to construct it piecemeal by accruing
first-order information in B. It is possible to add “poorman’s” second-order information to fB (cf. §4.4),
but this has not so far improved performances in general. BM with reliable second-order-type models
have been proposed, but they require considerably more sophisticated theory [77–79]; besides, they are
implicitly based on the assumption that some second-order information exists that can be extracted,
which may not be the case in all applications (f , not only fB, can well be polyhedral, cf. §3.3). Therefore,

we will concentrate here on the case where fB is an “unstable” model like f̌B can be expected to be,
with the corresponding unwelcome consequences: iterates do not have any locality properties and can
“swing wildly” across the search space, meaning that often the new pair ( zi , αi ), when added to Bi,
conveys little useful information, failing to effectively drive xi+1 towards x∗. As a consequence, overall
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convergence of the CPM can be rather slow (although possibly with a surprising twist towards the end,
cf. §2.1). This is why the CPM is more or less heavily modified, yielding the large family of (standard)
BM described in this work.

The structure of this work is as follows. In Section 2 we discuss different forms of stabilization, all
using the “primal” view of the problem (1), which try to address the issues illustrated above. Each
time that a MP is formulated, a dual problem is implicitly defined; making it explicit is often quite
useful for understanding the nuances of the approaches and improving their implementation, besides
suggesting even different forms of stabilization, as discussed in Section 3. Section 4 presents the other,
orthogonal approach that can significantly improve the practical convergence rate of a BM: exploiting
specific structures in f to develop specialized models. Finally, since the cost of computing f can be
considerable in some applications, another way of improving the practical efficiency of BM is allowing to
perform this computation only approximately, which is discussed in Section 5. Section 6 briefly reviews
a number of issues that have not been addressed in this work and draws some conclusions.

2 Stabilization

The previous discussion has illustrated the need for stabilizing the CPM, i.e., ensuring that the iterates
do not stray too far from a properly chosen point. However, in general the “right” point—ideally x∗—is
unknown, and therefore has to be estimated and revised iteratively. Hence, together with the sequence
{xi } of iterates one has to consider the sequence { x̄i } of stability centers which, as we shall see, is
actually the one that matters most in terms of convergence properties of the algorithm. It is quite
natural (although not strictly necessary [2]) to assume that the stability centers are chosen among the
iterates, i.e., { x̄i } ⊆ {xi }; a convenient consequence is that typically f i(x̄i) = f(x̄i). Several different

variants of BM correspond to different ways of ensuring that xi is “near enough” to x̄i. As the example
has illustrated, having a “good” x̄i is not, by itself, enough: one also have to properly estimate “how
near” xi has to be kept. While one can expect the answer “as near as possible” to be correct when
x̄i = x∗, in general this is not so, and an excessive stabilization is as detrimental as an insufficient one
(cf. Figure 2). Hence, each BM will also have some stabilization parameters controlling this aspect, again
with a different meaning for each different variant.

2.1 Trust-region stabilization

A simple approach closely mimics our conceptual example by solving the stabilized MP

xi ∈ argmin
{
f i(x) : ‖x− x̄i‖ ≤ δi } , (5)

where the iterate is kept in a Trust Region (TR) around the current stability center; the (single, as in
most cases) stabilization parameter is δi, the radius of the trust region. Usually the norm in (5) is the
L∞ one, because then the natural “explicit form” of (5)

(xi , vi ) ∈ argmin
{
v : v ≥ 〈zb,x〉 − αb b ∈ Bi , ‖x− x̄i‖ ≤ δi

}
(6)

is an LP; this justifies the “BOXSTEP” name originally given to the Trust-Region BM (TRBM) [76],
although the exact form of the TR is largely immaterial. Of course, rules to update x̄i and δi need be
defined. For the latter, a simple boundedness condition 0 < δ ≤ δi ≤ δ̄ <∞ is sufficient. The former can
be done in a natural way with an Armijo-type condition:

f(xi) ≤ f(x̄i) +m( f i(xi)− f(x̄i) ) ≡ ∆f i ≤ m∆i (7)

where m ∈ (0, 1) is fixed and ∆i = f i(xi)−f(x̄i) = vi−f(x̄i) < 0, ∆f i = f(xi)−f(x̄i) are, respectively,

the improvement estimated by the model and the actual one due to moving from x̄i to xi. If ∆i = 0,
then x̄i is optimal for (1): in fact, x̄i is then optimal for the MP (although this does not necessarily mean
that x̄i = xi, as the MP can have multiple optimal solutions, cf. Example 1). Hence, x̄i, which is in the
interior of the TR, is also optimal for (3) where the TR constraint is removed, which immediately implies
the result. As a conseqience, ∆i ≤ ε is a convenient approximate stopping condition for the method,
although one has to be careful that a small δi necessarily implies a small ∆i. Whenever (7) holds the,
tentative point xi is “substantially better” than x̄i, and one may reasonably set x̄i+1 = xi; this is usually
called a Serious Step (SS). Leaving the stability center unchanged, i.e., x̄i+1 = x̄i, is instead called a
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Null Step (NS). Clearly, (7) ensures that { f(x̄i) } is a decreasing sequence, and in fact one typically uses
f(x̄i) in place of f irec (although the latter may be slightly better). The role of NS is instead to ensure that
f i is improved “in the neighbourhood of x̄i”, with the aim to ultimately attaining an accurate enough
model so as to achieve descent. All in all, the method can be easily proven to be convergent.

Theorem 2 If the level sets of f are bounded, then { f(x̄i) } → f∗.

Proof. Clearly { x̄i } ⊂ lev( f , f(x̄1) ) and therefore by the boundedness assumption it admits at least
an accumulation point x̄∞; we want to prove that f∞ = f(x̄∞) = f∗. The proof is divided into two
distinct parts, according to the fact that { x̄i } is or not a finite sequence.

Assume that the sequence is finite: there is a last SS, after which only NS are done with the fixed
stability center x̄∞. Then, because δi ≤ δ̄ < ∞, one is actually applying the CPM to (1) with the
compact set X := X ∩ {x ∈ Rn : ‖x − x̄∞‖ ≤ δ̄ }. Therefore, by Theorem 1 (extracting subsequences
if necessary) {xi } → xδ, with xδ an optimal solution to that problem. If f(xδ) = f(x̄∞) then x̄∞ is
an optimal solution as well, and reasoning as before therefore an optimal solution of (1). Assume by
contradiction that f(xδ)− f(x̄∞) = ∆∞ < 0 instead. From the proof of Theorem 1, gi = f irec − vi → 0;
since f irec → f(xδ), v

i → f(xδ) as well. Hence, both ∆i = vi−f(x̄∞)→ ∆∞ and f(xi)−f(x∞)→ ∆∞:
since m < 1, this contradicts the fact that (7) never holds.

Let us now turn to the case where { x̄i } is an infinite sequence, converging (extracting subsequences if
necessary) to x̄∞. Clearly, (7) then implies that ∆i → 0. For all i and any fixed optimal solution x∗ to (1)
define Γi = f∗−f(x̄i) ≤ 0, and assume that Γ∞ = f∗−f(x̄∞) < 0. As Γi ≤ Γ∞ < 0, clearly, ‖x̄i−x∗‖ ≥ ε
for all i and some ε > 0. Define xi(α) = αx∗+(1−α)x̄i: by convexity, f(xi(α)) ≤ f(x̄i)+αΓi. Also, let
ᾱi = max{α : ‖xi(α)− x̄i‖ ≤ δi }: since δi ≥ δ > 0 and ‖x̄i − x∗‖ is bounded away from 0, then ᾱi is
also bounded away from 0. But since xi(ᾱi) is feasible for (5), for which xi is the optimal solution, and
f i ≤ f , one has f i(xi) ≤ f i(xi(ᾱi)) ≤ f(xi(ᾱi)) ≤ f(x̄i) + ᾱiΓi. Hence, ∆i = f i(xi) − f(x̄i) ≤ ᾱiΓi;

the right-hand side is bounded away from zero, contradicting ∆i → 0.

The above proof purposely used direct and elementary arguments and is obtained under unnecessarily
strict conditions. For instance, boundedness of the level sets is incompatible with f∗ = −∞, which instead
happens in applications. Also, one may want more freedom about the size of the trust region, say allowing
δi → 0 as x̄i → x∗. These extensions are possible, and the proof can be simplified in the process, using
appropriate tools (cf. §3.4). Yet, the proof already clearly illustrates the basic machinery underlying
many of BM convergence arguments. In particular, it is subdivided into two almost entirely distinct
cases: that of finitely many SS, and that of infinitely many ones. In the former case, the algorithm
becomes a standard CPM on the restricted feasible region and converges to an optimal solution of this
problem: this has to be a global optimum, for otherwise at some point the descent condition (7) is
triggered. In the latter case, the algorithm (restricted to the SS sub-sequence) is a standard descent one,
and it has to converge because whenever x̄i is “far” from x∗, the descent ∆i predicted by the model
cannot vanish. This almost complete separation is also apparent from the fact that the two conditions
on δi are separately required: 0 < δ ≤ δi is needed for SS to ensure that xi − x̄i does not vanish,
impairing global convergence of the { x̄i } sequence, whereas δi ≤ δ̄ < ∞ is needed to ensure that {xi }
during a sequence of consecutive NS actually remains inside a finite TR around the stability center. In
some sense the separation is positive: for instance, it tells that one may entirely reset Bi after any SS,
as accumulation of information is only required to make sequences of consecutive NS to work (not that
this is a good idea in practice, cf. §3.2). However, in general this disconnect makes it harder to prove
properties of the method, such as global efficiency estimates.

Of course, practitioners would be more interested in the practical effect of stabilization. An illustration
is given in Figure 2 for two specific problems. The figure compares how the distance from the optimal
solution and the relative gap evolve during the CPM (INF) and the TRBM with three different (fixed)
values of δ (1e+3, 1e+4, 1e+5).

The plots have several notable features, starting from the rather peculiar behaviour of the CPM. For
the vast majority of the iterations, the algorithm seems to be making no progress: many of the first
iterates xi are far worse than the initial one x1, and there seems to be little, if any, sign of progress
towards an optimum. However, information is indeed accrued during these iterations, and suddenly
a tipping point is reached where the convergence behaviour drastically changes, becoming surprisingly
quick at the end. Stabilizing may avoid the initial worsening of the iterations; even if it does not (right,
δ = 1+e5), it typically results in the “quick tail” ensuing sooner. Stronger stabilization may (left) or not
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(a) Evolution of ‖xi − x∗‖

(b) Evolution of (f(xi)− f∗)/f∗

Figure 2: Convergence plots of TRBM with different (fixed) values for δ

(right) result in better performances: a weaker stabilization may result in worse iterates at first, but a
faster convergence overall. Indeed, it is clearly possible to over-stabilize (δ = 1+e3): the algorithm has
then a much smoother convergence profile, but ultimately requires many more iterations. This is not
surprising, in that a small TR intuitively corresponds to the fact that the algorithm behaves basically
as a pure descent method (cf. §3.1): excessive stabilization does not allow to exploit the fact that the
model fB is “global” instead of “local”, and therefore potentially—provided that B contains enough
information—capable of leading the iterate towards the global optimum, which is what happens in the
“quick tail”. All in all, the plots clearly show that “the right amount of stabilization” can have a positive
impact; unfortunately, in general little can be said a-priori about how much stabilization is the right
amount. This also depends on which stabilization device is employed, of which the TR is but one.

2.2 Proximal stabilization

The Proximal BM (PBM) replaces the TR with a penalty, as in

xi = argmin
{
f i(x) + µi

2 ‖x− x̄
i‖22
}
, (8)

where the stabilization parameter is now µi. The penalty term also ensures that xi will not be “too far”
from x̄i, although the radius of the TR is only indirectly determined. Indeed, (8) could be viewed as
the Lagrangian relaxation of (5) w.r.t. the TR constraint if the L2 norm were used in the latter, and
in principle given a δi one could always choose µi such that the two MP give the same solution, and
vice-versa [57, Proposition XV.2.2.3]. The equivalence is only theoretical, since finding the value of µi

equivalent to a given δi (or vice-versa) is not straightforward; not that there would be any reason for
wanting to, since finding the “right” values of the two stabilization parameters in practice is roughly
equally difficult. It is not entirely surprising, however, that in practice the PBM is sometimes found to be
more efficient than the TRBM (e.g., [12, 43]). Indeed, the quadratic penalty term acts as a “poorman’s
Hessian”, adding some (admittedly, very rough) second-order information to the piecewise f̌B; an in-depth
computational evaluation of the practical behaviour of the PBM can be found e.g. in [15]. However, (8)
is a QP, which may be more costly than the LP (5), potentially negating the advantage due to a faster
convergence speed [40]. Yet, this can be partly counterbalanced (or even reversed [43]) by developing
specialized QP algorithms that exploit the structure of the MP and its typical usage pattern [34].
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An advantage of the stabilizing term is that it makes it easier to answer to an interesting question,
i.e., “what would the master problem achieve if the model fB were exact?” That is, consider the Moreau–
Yosida regularization φµ of f , perhaps better written in terms of the displacement d from x̄:

φµ(x̄) = min
{
f(x̄+ d) + µ

2 ‖d‖
2
2

}
. (9)

This is an interesting object with useful properties, starting from φµ ≤ f (trivial since d = 0 is feasible
in (9)). The unique optimal solution d∗ of (9) satisfies

0 ∈ ∂[ f(x̄+ ·) + µ
2 ‖·‖

2
2 ](d∗) ⇐⇒ −µd∗ ∈ ∂f(x) with x = x̄+ d∗ (10)

(note that we ignore the dependence of d∗ and x on both x̄ and µ for notational simplicity); in other
words, z∗ = −µd∗ is a (very specific) subgradient at x, and x itself is obtained by starting at x̄ and
moving of a step 1/µ along −z∗. Therefore, x might appear to be produced by a subgradient-type
approach, were it not that z∗ is a subgradient at the destination x rather than at the starting point x̄.
Yet, it turns out that moving from x̄ to x actually is a step of a gradient method: indeed, [57, Corollary
XI.3.4.1] shows that φµ is differentiable, with ∇φµ(x̄) = z∗ [57, Theorem XV.4.1.4]. Note that this
depends on smoothness of the stabilizing term rather than, as one may guess, its strong coercivity, i.e.,
uniqueness of d∗. Hence, d∗ = 000 implies that x̄ is both a minimum of f and of φµ: indeed, minimizing
φµ is equivalent to (1) [57, Theorem XV.4.1.7], with the obvious advantage that φµ is smooth. Thus, if
(9) were efficiently solvable—which it isn’t, as computing just one d∗ for given x̄ and µ is as difficult as
solving (1)—then one may run a Proximal Point Algorithm (PPA), simply obtained by always setting
x̄i+1 = x̄i+di∗ = xi. With only minor requirements on µi—it must not to grow too fast, which would be
analogous to δi → 0 very fast in the TRBM—and some technical conditions, the PPA can be shown to
be a convergent algorithm. We will not go into the details of the convergence proof, which can be found
e.g. in [57, §XV.4.2], besides noting that the fact that one can always take the pre-determined step 1/µi in
a gradient method and still converge is not surprising considering that ∇φµ is Lipschitz continuous with
constant µ (cf. again [57, Theorem XV.4.1.4]). Said otherwise, by necessity φµ(x) < φµ(x̄) (or d∗ = 0
and the algorithm terminates), hence the step is surely a descent one; the devious trick here is that the
stepsize µ is chosen beforehand, and the function φµ changes to reflect the choice, i.e., in such a way
that ∇φµ(x̄) provides the desired descent. However, all this is only conceptual, in that φµ is not readily
available. What is relevant is rather the interpretation of the PBM in terms of a PPA: basically, if “the
model were perfect”, i.e., fB = f , then each iteration would result in a SS. In other words, the PBM can
be seen as an approximated—but implementable, as opposed to conceptual—variant of the PPA, where
sequences of consecutive NS aim at computing ∇φµ(x̄) “accurately enough”, so that finally a SS can
be performed. This ties in well with the standard structure of convergence proofs, where sequences of
consecutive NS and the sequence of SS are analysed separately.

Besides being aesthetically pleasing, these results are also the basis of practical algorithmic develop-
ments, comprised some related to the real crux of the (P)BM, which is appropriately (and dynamically)
choosing the stabilization parameter. These are based on the idea that (9) could be generalized to

φH(x̄) = min
{
f(x̄+ d) + 1

2d
THd

}
(11)

depending on a whole matrix parameter H � 0, the standard Moreau–Yosida regularization then being
just the special case for H = µI. Clearly it would be attractive to have H providing a better depiction
of the second-order behaviour of f at x̄ that what the “poorman’s matrix” µI can do. Of course, the
Hessian cannot be used, but one may nonetheless consider quasi-Newton formulæ. Say, with z̄i ∈ ∂f(x̄i)
and zi ∈ ∂f(xi), it would be natural to select Hi+1 so that the standard quasi-Newton equation

Hi+1∆xi = ∆zi (12)

is satisfied with ∆xi = xi − x̄i and ∆zi = zi − z̄i, which is what one would do if f were differentiable;
which it isn’t, and this entirely breaks the theory upon which (12) relies. Yet, φi = φHi is differentiable,
and therefore (12) would make sense with ∆zi = ∇φi(xi)−∇φi(x̄i), were it not for the fact that exactly
computing gradients of φi requires solving a problem as difficult as the original (1). Here, however,
one can cleverly exploit (10), immediately generalized as ∇φH(x̄) = −Hd∗ ∈ ∂f(x), to find d∗—and
therefore x̄—given z ∈ ∂f(x). Indeed, −Hd∗ = z gives (x̄− x) = H−1z, i.e., z = ∇φH(x+H−1z). In
plain words, once a subgradient of f is known at any point x, one can easily compute the point x̄H(z)
such that z = ∇φH(x̄H(z)). This reversal operation [73] suggests to use (12) indeed with ∆zi = zi−z̄i =
∇φi(x̄i(zi))−∇φi(x̄i(z̄i)), but also with ∆xi = x̄i(zi)− x̄i(z̄i) (with the obvious notation). This may
give rise to various quasi-Newton approaches depending on the way in which (12) is approached, say with
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typical rank-one updates. We will not delve in these details, to be found in [73] and references therein,
except for the specific case where H is constrained to have the “poorman’s” form µI. This means that
there is no hope that (12) be satisfied except in a least-squares sense, which yields

µi+1 = ‖∆zi‖22 / 〈∆zi,∆xi〉 . (13)

Of course, for (13) to make sense one must ensure that 〈∆zi,∆xi〉 > 0, which can be done by an appro-
priate curved search, i.e., solving the MP with iteratively changing µ until the condition is attained [73];
this a natural enough approach for BM, already proposed e.g. in [88]. Under rather strong conditions (f
differentiable or strongly convex), fast convergence (respectively, superlinear or two-step-superlinear) can
be proven. Perhaps more importantly, the approach seems to improve practical performances w.r.t. other
proposed strategies [62]. Also, the idea can be extended to making use of other available information for
even better managing µ [85].

Yet, this does not imply that effective µ-management is completely understood. Formula (13) requires
a specific care to ensure that 〈∆zi,∆xi〉 > 0, and the theory is developed under the assumption that µ
is only updated at SS, whereas intuitively being able to increase µ after a few unsuccessful NS could also
be useful. Furthermore, all these approaches [62, 73, 85] are based on “local” behaviour of f , i.e., they
do not explicitly depend on how “far” x̄i is from x∗ (f(x̄i) from f∗), which may lead to sequences of
“short” steps that slow down convergence (cf. δ = 1e+3 in Figure 2). Although more “global” strategies
can be devised [38], other stabilization approaches seem to be inherently better suited in this respect, as
discussed next.

2.3 Level stabilization

The idea of level stabilization is in some sense opposite to that of the previous approaches. In general,
the issue is that fB is “too optimistic” a model of f , in that it dramatically underestimates the true

value of f in a large part of the space. This lures the MP to points xi such that fB(xi) � f(x̄), often

“unreasonably so”, while f(xi) � f(x̄). The TRBM tries to se the TR in such a way as to exclude the
points where fB(x) � f(x̄), while the PBM tries to limit their appeal by penalizing them on the basis
of the distance from x̄. In these cases, the amount of descent that the model will estimate for the next
iteration, as measured by ∆i = f i(xi)− f(x̄i) < 0, is a complex function of the stabilization parameters

(δi and µi). A different approach is to fix beforehand how much descent the model should attain, which
clearly has an intuitive appeal in the context of a descent method, i.e., to work in the level set lev( fB , l )
for some given level parameter l < f(x̄). Such a set, however, may well be “large” (even unbounded),
and therefore there has to be some way pick a specific point in there. In the spirit of BM, the intuitive
idea is just that of keeping “close” to the stability center, which leads to the MP

xi = argmin
{
‖x− x̄i‖ : f i(x) ≤ li

}
. (14)

An advantage of the resulting Proximal Level BM (PLBM) approach is that the stabilization parameter,
li, has the scale of function values, which may make it easier to choose. For instance, if the optimal value
f∗ is known, then obviously li has to belong to the interval [ f(x̄i) , f∗ ] (actually, [ f irec , f∗ ]). The simple
strategy of fixing any λ ∈ (0, 1] and choosing li = λf(x̄i) + (1− λ)f∗ then works even with very relaxed
assumptions on the choice of x̄i, such as by always doing SS (x̄i+1 = xi) even if (7) does not hold, and
even keeping x̄i (possibly, /∈ X) fixed [70]. The proof is somewhat technical and is not repeated here;
what is relevant is that knowledge of f∗ is not really required, as it can be replaced by its lower bound vi

obtained by solving the original un-stabilized MP (3) (assumed finite). Solving the MP of the CPM but
not directly using its optimal solution as the next iterate is an interesting algorithmic concept, of which
we will see other applications (cf. §2.5); here, it is rather the optimal value vi that is used to compute
the value of li, after which (14) provides xi. Of course, the disadvantage is having to solve two (related
but different) MPs, which is not appealing in the case where they are rather costly (e.g., [97]). However,
in some applications the cost of computing f far outweighs the MP cost, and therefore this approach
may be competitive in that it provides a clear and principled way to choose the stabilization parameter,
as opposed to the heuristic ones common for the TRBM and PBM, possibly resulting in better practical
convergence.

In case one is not willing to compute vi, or unable to do so (say, because (3) is unbounded below), the
alternative is to choose li arbitrarily. The possible troubling consequence is that (14) may be empty, but
this is actually not an issue; since f i ≤ f , this means that li < f∗. Hence, if this happens the algorithm
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has found a provably correct lower bound on f∗, which can then be used in place of f∗/v
i to set the

next target; clearly, then li+1 > li, hopefully making (14) feasible. This is one of the specific traits of
the PLBM, i.e., that it can provide valid lower approximations to f∗; in some cases this can be helpful.
Actually, also TRBM and PBM may do this, since their next iterate xi may in fact coincide with the
optimal solution of (3), which is easy to detect; for instance, for TRBM this happens if xi is in the interior
of the TR. However, in these methods the occurrence is incidental and does not impact on the algorithm,
while in the PLBM it is a crucial aspect. Hence, together with NS and SS, the convergence analysis for
the PLBM has to cater for these Level Steps (LS); yet, this is easy. In fact, if, say, li+1 = λf(x̄i)+(1−λ)li

whenever a LS happens, infinitely many LSs result in li → f(x̄i), which means that f(x̄i) → f∗. Once
this case is dealt with, the remaining analysis is analogous to the case where f∗/v

i are available, and not
dissimilar from those of the TRBM and PBM.

Indeed, an interesting recent development is the Doubly-Stabilized BM (DSBM) of [26], which has
both proximal and level stabilization, i.e., MP

xi = argmin
{
f i(x) + µi‖x− x̄i‖22 : f i(x) ≤ li

}
. (15)

Two stabilization parameters are not necessarily more difficult to tune than one; actually, the converse
may happen. Indeed, at any given iteration one among µi and li is “irrelevant”: the obtained xi is either
that of (8) (a proximal iteration), or that of (14) (a level iteration), and it is easy (cf. (34)) to tell which
of the two it is. Hence, the somewhat “more principled” level parameter li, which can exploit information
about f∗, can be used to select the desired amount of descent, while µi can be used to select a “good”
xi in the (possibly, large) set lev( fB , l

i ); the results of [26] are encouraging. Convergence theory is
hardly much different from that of PBM: once the case of infinitely many LS is ruled out, the algorithm
is (almost, barring some fine details) exactly a PBM.

One may, however, argue that there is actually no need for the level stabilization in order to tune µi

exploiting information about f∗. Firstly, any known guaranteed lower bound l ≤ f∗—such as vi from (3),
or directly obtained by the problem, cf. §3—can be directly incorporated into fB under the form of the

“flat” linearization (000 , l ) ∈ B. This incurs in hardly any MP cost and it means that xi will automatically
exploit this information, which is indeed useful in practice; for instance, surely vi ≥ l. Furthermore, one
might design µ-updating strategies that take into account this information and, say, try to ensure that
f i(xi) ≤ li = λf(x̄i) + (1− λ)l exactly as in the DSBM. Somewhat different, but related, strategies can

use information about the fact that xi is, or not, “close” to a minimizer of f i to properly increase or

decrease µi (cf. e.g. [35]). Current consensus is that the l-updating strategies of PLBM are more robust,
in particular in the constrained case (X 6= Rn), while the PBM may be more efficient, especially in the
unconstrained case; thus, the DSBM makes sense, as would any µ-updating strategy “simulating” it. All
this highlights how proper tuning of the proximal parameters is still quite an open issue, and an area
of active research. This also justifies why there is, among practitioners, a latent distrust of stabilization
techniques, partly justifying the development of the alternative approaches of §2.5.

2.4 Center-based approaches

Another class of BM are based on the idea that, instead of aiming for the “extreme” point xi minimizing
fB, one should target the “center” of a localization set L(g, l) = { (x , v ) : g(x) ≤ v ≤ l } ⊂ Rn+1, which
is the epigraphical version of the level set, for appropriately chosen g and l. For instance, the polyhedron

Li = L(f̌ i, f irec) =
{

(x , v ) : 〈zb,x〉 − αb ≤ v ≤ f irec b ∈ Bi
}

(cf. (4)) is clearly the best possible outer approximation—with the known data—of the epigraphical
extension of the set of the optimal solutions L∗ = L(f, f∗) = { (x , v ) : f(x) = v = f∗ }; it is defined by
the linearizations in Bi, plus the hat cut v ≤ f irec. This is obviously related with level-based BM, whose
MP has feasible set is L(f i, li) (identical but for the hat cut). Each time the oracle is called at some x in

(the projection of) Li, the generated information can be used to cut away some part of Li, obtaining a
smaller Li+1. Indeed, if f(x) > f i(x) then the corresponding new linearization will at least cut away the

point (x , f i(x) ) ∈ Li, while if f(x) < f irec then the hat cut will be lowered; barring blatantly obvious
bad choices of x, at least one of the conditions must happen, and both potentially can. The idea is then
to select x so that as “much as possible” of Li is cut away at each iteration; intuitively, this corresponds
to choosing xi in “the center” of Li. Among the possible definitions of center of a polyhedron, a widely
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used one is the Analytic Center (AC): the minimum of the logarithmic barrier function

(xi , vi ) = argmin
{
− log( f irec − v )−

∑
b∈Bi log( v − 〈zb,x〉 − αb )

}
(16)

upon which Interior-Point (IP) methods are based. It can be alternatively defined as the point (xi , vi ) ∈
Li that maximizes the product of the slacks of the constraints; using it as the next iterate gives the
Analytic Center CPM (ACCPM). Clearly, this means that Li must have a nonempty interior and must
be bounded; the latter is in general nontrivial, exactly as in the CPM. Due to the relationships with
IP methods, the (approximate) computation of the AC can be performed by means of extremely well-
understood and efficient methods. Also, the known methods can be adapted to efficiently update (xi , vi )
to (xi+1 , vi+1 ) when a new linearization enters Bi and/or the hat cut changes, a nontrivial feat because
the former is typically no longer feasible, even less interior [49]. The upshot is that ACCPM has favourable
worst-case complexity estimates, and usually a regular convergence profile.

As other methods explicitly constructed to optimize the worst-case, however, ACCPM is not always
very fast in practice. One issue is that, as discussed in §2.1, when enough information has been accrued
fi can be quite accurate a model (especially if f itself is polyhedral), and therefore its optimum can be a
promising point where to call the oracle; ACCPM not using it may lead to missing out on the “fast tail”
of the CPM. There are also some specific issues due to the fact that the AC of a polyhedron depends from
its algebraic representation rather than from its true geometry. For instance, if a linearization ( zb , αb )
is generated multiple times (which happens in applications), this skews the AC to be “farther” from that.
Conversely, the hat cut v ≤ f irec is the only inequality limiting v from above; as |Bi| grows the influence
of the many cuts “pushing up v from below” may overwhelm that of the hat cut, which therefore tends
to become almost active. Both cases may slow down the convergence, which is based on keeping (xi , vi )
firmly in the interior of Li, but specific adaptations can be devised to counter these effects [29]. Also,
the issue of compactness of Li can be faced by the Proximal ACCPM (PACCPM), a “doubly-stabilized”
version [4] where a standard proximal term a-la (8) (thus introducing a proximal center x̄ and a proximal
parameter µ) is added to (16), which is claimed to further improve the performances of the approach.
Anyway, ACCPM has not been widely adopted; this is likely due, above and beyond any other reason,
to the need of specific sophisticated implementations for efficiently solving (16), which cannot therefore
benefit from the regular advances of general-purpose LP/QP solvers.

It is possible to avoid the need of specialized approaches to solve the MP by using the Chebychev
Center (CC) instead, i.e., the center of the largest ball inside Li. For a generic polyhedron P = {y ∈
Rk : 〈ah,y〉 ≤ bh h ∈ H }, the CC is the optimal solution of the LP

(y , σ ) = argmax
{
σ : 〈ah,y〉+ ‖ah‖σ ≤ bh h ∈ H

}
(17)

(assuming it has any, which obviously requires P to be compact). When applied to Li, y = (x , v )
(Rk = Rn+1) and the hat cut v ≤ f irec gives rise to a constraint of the form v + σ ≤ f irec, which
is necessarily active in the optimal solution [81, Proposition 2.1]; this allows to substitute away v for
f irec − σ, which together with ν = −σ yields

(xi , νi ) ∈ argmin
{
ν : ν ≥ 〈z

b,x〉−αb−fi
rec

1+
√
‖zb‖2+1

b ∈ Bi
}
. (18)

The notation is chosen to highlight the similarity with the MP (4) of the CPM: besides translating the
right-hand side by f irec (which is routinely done, cf. (21)), each constraint is just scaled by a factor
depending only on ‖zb‖. Using xi from (18) , which already can have a stabilization effect as in ACCPM,
gives the Chebychev Center CPM (C3PM) [58]. The modern take to the approach [81] views (18) as the
finitely sampled version of the Elzinga-Moore-Ouorou function

Ψ( l ) = inf
{
ν : ν ≥ 〈z,x−y〉+f(y)−l

1+
√
‖z‖2+1

y ∈ Rn z ∈ ∂f(y)
}

; (19)

note that in (19) x and ν are the variables upon which the minimization is performed (as in (18)), whereas
y and z serve to index the infinitely many linear constraints. The function Ψ( l ) gives the negative of
the radius of the largest sphere inscribed into L(f, l), and therefore is a merit function for (1): Ψ( l ) ≤ 0,
and Ψ( l ) = 0 if and only if l = f∗. Therefore, (1) is equivalent to finding l such that Ψ( l ) = 0. One can
then make Ψ a multivariate function by just setting Ψ(x) = Ψ(f(x)); this could be seen as awkward,
were it not that it makes it possible to add a proximal term, yielding the MP

min
{
ν + µi

2 ‖x− x̄
i‖22 : ν ≥ 〈z

b,x〉−αb−f(x̄i)

1+
√
‖zb‖2+1

b ∈ Bi
}
, (20)
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which has the usual advantage to have a finite solution even if L(f i, f(x̄i) is unbounded. Clearly, this

is for the C3PM what the PBM is for the CPM; in other words, (20) with an “infinitely large” Bi a-la
(19) defines the Elzinga-Moore-Moreau-Yosida regularization, which is to Ψ(x) what the Moreau-Yosida
regularization φµ (cf. (9)) is to f . Such a function has minima where Ψ(x) = 0, and therefore minimizing
it is equivalent to (1) [81]. It is not surprising, then, that the Proximal C3PM (PC3PM) algorithm
that minimizes it is very close to the PBM, down to the fine details of the solution of the MP (which
is indeed identical save for the scaling factor 1 +

√
‖zb‖2 + 1), and whose convergence analysis proceeds

in the same way. Interestingly, a variant of the approach [81, §5] exists where a second LP is solved to
compute the current maximum radius of the sphere, and this is used for tuning the proximal parameter
µi, analogously to how the PLBM solves (3) to tune li. This is not incidental: that target radius method
can be interpreted as a PLBM with a specific rule to define li [23].

Hence, both centers-based approaches, like the PLBM, benefit from adding a second proximal stabi-
lizing device. While double stabilization has been reported to be superior to the (singly-stabilized) PBM
in some cases [26,81], this is not yet firmly established for all relevant applications.

2.5 Approximate CPM approaches

All previous stabilization approaches are based on modifying the MP of CPM, although in some cases that
is also solved to help tuning the stabilization parameter(s). Another take is to keep the MP unchanged,
but deal with its solution differently.

A first idea is solving (3) only approximately, a simple way of doing this being to employ a subgradient-
type method (a “poorman’s version” of the PBM, cf §3.1), whose slow convergence and lack of effective
stopping criteria mean that it is typically ran with a fixed number of iterations, reaching only an approx-
imately optimal solution. This is actually natural enough when (1) itself is the dual of the problem one is
actually interested in solving; as this is discussed in §3.3 we refrain from further delving into the subject
now, pointing e.g. to [90] for details. Perhaps more interesting is the recent resurgence of ACCPM-type
methods under the moniker of “Primal-Dual Column Generation Technique” (PDCGT) [51]. The idea is
again that of stopping “way before” the optimal solution of (3) is achieved, except doing this with an IP
approach rather than with a subgradient-type one. This exploits the fact that IP methods approximately
follow the central path of the polyhedron, which starts from the AC—exactly xi of (16), if the hat cut is
included in the formulation—and goes to the xi of (3). Hence, by construction they produce a sequence
of “well centred” iterates in Li, except in the v-dimension (that is minimized); thus, by stopping the IP
method early on—which is also convenient computationally, as IP iterations are costly—one can obtain
well-centred solution “in between” the AC and the CPM iterate. Since (feasible) primal-dual IP methods
(unlike, say, subgradient-type methods) allow to measure the quality of the current iterate, the stabiliza-
tion parameter can just be the gap ε below which the MP computation is terminated. A large ε produces
iterates close to the AC, while a small ε produces iterates close to that of the standard CPM, which can
be beneficial in the “fast tail” of the CPM when Bi is a “good” model. As in ACCPM, however, for
efficiency reasons nontrivial warm-starting strategies are needed each time the IP method is re-started
after a new linearization is included in Bi [50].

PDCGT tracks the iterative solution, via an IP method, of the MP from the AC of Li to the CPM
iterate xi of (3), and “stops somewhere in the middle”. The In-Out Approach (IOA) [11] takes a similar
stance in a simpler way, using the previous iterate—which doubles as a stability center x̄i—in lieu of
the AC. That is, the optimal solution xi of (3) is obtained (which does not depend on x̄i), and then f
is computed as x̄i+1 = (1 − λi)x̄i + λixi for some λi ∈ (0, 1]. The “In-Out” moniker derives from the
fact that ( x̄i , f(x̄i) ) is inside epi f , whereas (xi , vi ) belongs to Li which is an outer approximation,
and therefore it is very likely outside epi f (if not, the algorithm terminates). By taking only a partial
step towards xi from x̄i, the IOA tries to remain inside the epigraph. If this actually happens, then
f(x̄i+1) ≤ f(x̄i) + λi∆i, where as usual ∆i = vi − f(x̄i) < 0; hence, a significant decrease of f is
attained, a-la (7). Otherwise, the newly obtained linearization (zi , αi ) cuts away a part of Li. Clearly,
the CPM is the special case where λi = 1 uniformly, and therefore convergence can be proven similarly to
the CPM whenever λi does not become too small; the simple condition λi ≥ λ > 0 is used in [11]. As most
other stabilization approaches, the IOA requires ways to dynamically tune the stabilization parameter
λi. The recent large computational study in [83] deals with these aspects and proposes further variants
where the next iterate is chosen along the deflected direction (xi− x̄i)+βizi, where zi is the subgradient
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at x̄i. The IOA method is shown to be competitive with ones using piecewise-linear penalty terms/trust
regions (cf. §3.4).

It is worth remarking that the IOA is also related with the version of the PLBM where the MP of
the CPM is solved, prior to (14), to compute the lower bound vi out of which li is obtained. Indeed,
the PLBM would obtain the same xi as the IOA if it was using the (upper, cf. 5.2) model f i such that

f i(x) = (1−λ)f(x̄i) +λvi if x = (1−λ)x̄i+λxi, and f i(x) =∞ otherwise, instead as the cutting-plane
one, in (14). To the best of our knowledge, this connection has never been explicitly made before.

A significant perceived benefit of both the PDCGM and the IOA for practitioners is that there is no
need to modify the MP of the CPM; this may (or may not) also make them more efficient, since, say,
an LP is solved instead of a QP like (8)/(14), and the LP does not have the extra bounds of (5). Of
course, the approaches also share the issue of the CPM of requiring (3) to have a solution in the first
place (e.g., X compact). Hybridizing them with a proximal/trust region approach, a-la [4], could solve
this issue, but would do away with the benefit of working with an unsullied MP. Yet, in particular for
the IP method used by PDCGM, the addition of a simple quadratic term in the objective function may
not make it any significantly more difficult to solve, and conceivably even less so (cf. e.g. [17]). To the
best of our knowledge, this has not been tested yet.

While the above recount summarizes many of the (simple) BM approaches in the literature, the
discussion is purposely limited to the “primal” description of the problem. In many relevant applications
(and, in fact, in general) the “dual” aspect is as much, if not more, important. Indeed, (1) itself can be a
dual problem, whose aim is to help solving a primal one. Furthermore, the dual description is also useful
to understand and implement the approaches themselves; this is the subject of the next section.

3 Duality

As everywhere in convex analysis, duality is inescapable: even if one were trying to purposely avoid it, as
we did in the previous section, it would still be there. In our case, this starts from the fact that every BM
solves one (or more) MP, which is a convex program and therefore it has a dual. Most often, MPs are LPs
or QPs, and therefore their duals are also straightforward to compute. Doing so is actually beneficial,
both because the dual may be simpler to solve, and because it reveals details of the method that can be
important to understand and improve it. Also, in some applications (1) is itself the dual of the problem
one is actually interested to solve, and therefore the dual of the MP (and of (1)) is related to it. This
section is devoted to discussing all these issues and their main conceptual and algorithmic consequences.

3.1 Dual forms of the Master Problem

For discussing the dual forms of the MP, it is useful to introduce the translated model fB,x(d) = fB(x+

d) − f(x) w.r.t. a point x (typically, the stability center x̄). This is a model of the translated function
fx̄(d) = f(x̄+ d)− f(x̄) such that fx̄(000) = 0, with fB,x̄(000) = 0 if any pair having xb = x̄ belongs to B,

as it usually (but not always) happens. A displacement (cf. (9)) d such as fB,x̄(d) < 0 indicates a point

x = x̄ + d where fB(x) < f(x̄), a crucial property throughout all of §2 (e.g., (7) and (20)). The effect

of translation on B is trivial: it only amounts at replacing the αb—the intercepts of the linearizations in
the “default stability center” 000—with the linearization errors

αb(x̄) = f(x̄)− [ f(xb) + 〈zb, x̄− xb〉 ] = αb − 〈zb, x̄〉+ f(x̄) (21)

(just apply the definition to fx̄). By convexity, αb(x̄) ≥ 0, and

zb ∈ ∂αb(x̄)f(x̄) (22)

where the ε-subdifferential ∂εf(x̄) contains all ε-subgradients of f at x̄, i.e., z ∈ Rn such that f(x) ≥
f(x̄)+〈z,x− x̄〉−ε for all x ∈ Rn. Therefore, αb(x̄) is a measure of “how close” zb is to be a subgradient
of f at x̄. Although the definition (21) uses the original iterates xb, it is not necessary to store them to
re-compute the linearization errors when x̄ changes to any other x, since they can be updated using the
information transport property

αb(x) = 〈zb, x̄− x〉+ αb(x̄) + ( f(x)− f(x̄) ) (23)

12



(just write (21) for x and x̄ and simplify out common terms). Since usually x̄ is clear from the context,
for the sake of notational simplicity we will use αb as much as possible. Doing so, the MP of the CPM
using the translated model fB,x̄ is formally identical to (4), save that its optimal value need be increased

by f(x̄), to account for the translation in f/fB, to recover the original objective value. This provides a
neat interpretation for its (linear) dual, i.e.,

[−] min
{ ∑

b∈Bi αbθb :
∑
b∈Bi zbθb = 000 ,

∑
b∈Bi θb = 1 , θb ≥ 0 b ∈ Bi

}
[−f(x̄i)] . (24)

Note that ordinarily (24) would be a maximization one with coefficients −αb in the objective function;
the change of sign reveals the problem as that of constructing 000 as convex combination of the zb using “as
much accurate as possible” information w.r.t. the point x̄ (although the latter actually changes nothing
in this problem), also accounting for the fact that the offset has to be changed in sign, too. This intuitive
interpretation can be stated exactly. It is crucial that the dual variables θb are convex combinators; since
this will be quite common, we will denote by Θ the unitary simplex of appropriate dimension. The fact
that θ ∈ Θ implies that∑

b∈B z
bθb = z(θ) ∈ ∂fα(θ)(x̄) where α(θ) =

∑
b∈B α

bθb . (25)

This can be obtained combining ∂εfB(x̄) ⊆ ∂εf(x̄) (use [57, Proposition XI.1.3.1.(vii)] together with

f i ≤ f and f i(x̄) = f(x̄)) and

∂εf
i(x̄) =

{
z =

∑
b∈Bi zbθb : θ ∈ Θ ,

∑
b∈Bi αbθb ≤ ε

}
[57, Example XI.5.3]. The dual (24) can therefore be described in plain words as the problem of finding

the smallest ε such that 000 ∈ ∂εf i(x̄).

This interpretation carries over to the PBM: the explicit, translated form of (8) and its (quadratic)
dual are, respectively

(di , vi ) = argmin
{
v + µi

2 ‖d‖
2
2 : v ≥ 〈zb,d〉 − αb b ∈ Bi

}
[+f(x̄i)] (26)

θi = argmin
{

1
2µi

∥∥∑
b∈Bi zbθb

∥∥2

2
+
∑
b∈Bi αbθb : θ ∈ Θ

}
[−f(x̄i)] . (27)

The dual optimal solution θi gives, via (25), the aggregated linearization ( z̄i = z(θi) , ᾱi = α(θi) ) such
that z̄i ∈ ∂ᾱif(x̄i); the complementary slackness conditions tie that to the optimal solution of (26) as

di = −(1/µi)z̄i , vi = 〈z̄i,di〉 − ᾱi = −(1/µi)‖z̄i‖22 − ᾱi . (28)

Thus, the dual problem requires finding an ε-subgradient z̄i, obtained as a convex combination of pre-
viously obtained ones, which has both a small norm and a small ε, with the relative weight of the two
objective functions dictated by µi. In other words, (27) is the augmented Lagrangian of (24) w.r.t. the con-
straint requiring zi to be 000; it is therefore not surprising, then, that the former always have a(n unique) so-
lution, whereas the latter can be empty. Furthermore, the next iterate is then xi = x̄i+di = x̄i−(1/µi)z̄i,
i.e., is obtained by doing a step 1/µi along the approximated subgradient; this strongly links the PBM
with (approximated, deflected) subgradient-type methods, cf. §3.2 and [19].

The fact that z̄i ∈ ∂ᾱif(x̄i) has several useful consequences. For instance, it immediately candidates
it at being used as an alternative source of approximated subgradients of f to be used in (13) [85]. More
importantly, however, it provides the stopping criterion of the method: z̄i = 000 and ᾱi = 0 imply that x̄i

is optimal. In practice one therefore stops when ‖z̄i‖ and ᾱi are both “small”. One can either use two
distinct thresholds for the two quantities, or join both in a single criterion

‖z̄i‖22/µ̄+ ᾱi ≤ ε , (29)

where µ̄ is a scaling factor and ε is the final (absolute) accuracy required. This still requires to properly
chose µ̄, but at least µ̄ and µi should be related; this means that (29) can be exploited to on-line tune
µi, as discussed below.

However, what the above development mainly reveals is that BM have to properly balance two con-
trasting objectives: getting a “small” ‖z̄i‖, and getting a “small” ᾱi. The CPM goes all the way towards
the first, which basically means completely ignoring the “quality” of the first-order information w.r.t. x̄i,
with the known negative practical consequences. The opposite approach is well represented by the fol-
lowing variant of MP [57, §XI.2.4]:

min
{ ∥∥∑

b∈B z
bθb
∥∥2

2
:
∑
b∈B α

bθb ≤ εi , θ ∈ Θ
}
. (30)
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One can see (27) as the Lagrangian relaxation of (30) having 1/µi as Lagrangian multiplier, and therefore
this would yield a BM with basically the same relationship to the PBM as the LBM has, except in the
dual. In principle, for any given εi one could find a µi giving the same solution. The effect of a small
εi in (30)—equivalently, a small µi in (30)—is therefore to discard all the first-order information with
“large” αb, so that the new iterate only takes into account information that is “quite accurate” at x̄i.
Indeed, (30) can be seen as a minor variant of the MP of ε-descent methods [57, Chap. IX], where Bi
is exclusively used to construct an inner approximation of ∂εif(x̄i); then, (30) becomes the problem of
finding the steepest ε-descent direction for the model, i.e., the least-norm vector in ∂εif

i(x̄). Choosing

the right value of the stabilization parameter εi—similarly to δi, µi, li, λi, . . . —is crucial, since pure
steepest descent methods have a rather bad practical behaviour even in the smooth case.

The issue with all BM is therefore to find the right value of the stabilization parameter(s) so as on
one hand to include as much as possible non-local information to avoid the pitfalls of the steepest descent
direction, and on the other hand not to trust the model too far beyond the region where it actually
provides a reasonable depiction of the function’s behaviour. For the PBM, this can be described in terms
of finding the right point along the proximal trajectory, the family of solutions of (8) as a function of
µi, which is a piecewise linear function, easily computed incrementally by solving a sequence of linear
programs [45] or by sensitivity analysis techniques [34]. Exploring the proximal trajectory allows one to
figure out how ‖zi‖ and αi change as µi does, and therefore can be the basis for handling µi.

Although similar relationship between the stabilization parameter and the locality of the used infor-
mation should hold for other forms of BM, the different shape of the MP makes them less obvious to see.
For reasons to become apparent in due time we postpone the discussion on the TRBM on §3.4. For the
LBM, the explicit form of (14) and its dual are, respectively,

di ∈ argmin
{
‖d‖22/2 : l ≥ 〈zb,d〉 − αb b ∈ Bi

}
(31)

θi ∈ argmin
{ ∥∥∑

b∈Bi zbθb
∥∥2

2
/2 +

∑
b∈Bi(l + αb)θb : θ ≥ 000

}
(32)

(where αb has to be intended as αb(x̄)). Here again di = −z(θi) holds as in (25), but θi does not
necessarily belong to Θ. Yet, the fact that necessarily di 6= 000 implies that θi 6= 000 as well; thus, θi/〈θi,u〉 ∈
Θ (u being the vector of all ones). In other words, di is still a scaled multiple of a convex combination of
the zb, although the stepsize is no longer clearly related to the stabilization parameter. With a “small”
li, (32) will have an incentive to only use zb with “small” αb (locally accurate information), whereas
with a “large” li the role of the αb becomes marginal. Also, note that, despite being a QP, (32) can be
unbounded below as the objective function is not necessarily strictly convex (in fact, (31) can be empty).
Similarly, the explicit form of the MP (15) of the DSBM and its dual are

(di , vi ) = min
{
v + µi

2 ‖d‖
2
2 : v ≥ 〈zb,d〉 − αb b ∈ Bi , li ≥ v

}
(33)

(θi , ρi ) ∈ argmin 1
2µi

∥∥∑
b∈Bi zbθb

∥∥2

2
+
∑
b∈Bi αbθb + liρ∑

b∈Bi θb − ρ = 1 , ρ ≥ 0 , θb ≥ 0 b ∈ Bi
. (34)

By complementary slackness, ρi > 0 implies vi = li: in this case, (34) coincides with (32), in that
ρi = 〈θi,u〉 and therefore the objective function is identical, save for a constant term and the scaling
factor µi on the quadratic term. If, instead, vi < li then ρi = 0 and (34) coincides with (27). Thus, ρi

can be used to devise strategies to adjust li and/or µi [26]; this is but one of the many important uses of
dual information, as discussed in the next section.

3.2 Algorithmic uses of duality

The dual concepts introduced in the previous section have many uses in the definition and analysis of
BM. In particular, if θi ∈ Θ then the aggregated pair ( z̄i = z(θi) , ᾱi = α(θi) ) satisfies z̄i ∈ ∂ᾱif(x̄i),
and therefore can be inserted into Bi. This is free for the PBM and the DSBM when ρi = 0; for the
LBM, or the DSBM when ρi > 0, a simple scaling is needed, and an analogous technique can be used for
PC3PM.

The aggregated pair ( z̄i , ᾱi ) has not been obtained at any iterate xi, but this is not an issue;
ᾱi = ᾱi(x̄i) can be updated via (23) when x̄i changes as all the other ones in Bi. The important result
is that ( z̄i , ᾱi ) can actually substitute all other information: if one were to set Bi+1 = { ( z̄i , ᾱi ) },
then (di+1 , vi+1 ) = (di , vi ) in (26). Of course, one does not really want the solution to remain the
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same, in particular if a NS is being performed; this is not so because of the new information ( zi , αi )
computed by evaluating f(xi). It is easy to prove that even if one takes the minimal stance Bi+1 = B̄i =
{ ( z̄i , ᾱi ) , ( zi , αi ) }—called the poorman’s bundle—the PBM is still convergent; that is, an infinite
sequence of consecutive NS will result in ‖z̄i‖ → 0 and ᾱi → 0. The proof is simple and instructive
enough to be worth reporting: it is based on the fact that (27) with B̄i is the simple problem

min
{
hi(θ) = 1

2µi ‖θz̄i + (1− θ)zi‖22 + θᾱi + (1− θ)αi : θ ∈ [0, 1]
}
, (35)

whose optimal solution has the following closed-form expression:

θi∗ = min
{

1 , max
{

0 , αi−ᾱi−〈zi,z̄i−zi〉/µi

‖z̄i−zi‖22/µi

}}
. (36)

Since hi(1) is the optimal value of (27) at iteration i, one only has to show that hi(1)− hi(θi∗) decreases
enough. This hinges on the fact that (7) not holding can be rewritten, by means of some simple algebra
(cf. (28))

∆f i > −mvi = −m
(
− (1/µi)‖z̄i‖22 − ᾱi

)
≥ −mhi(1) , (37)

from which it is easy to derive

hi(1)− hi(θi∗) ≥
(1−m)hi(1)

2 min
{

1 , (1−m)hi(1)
‖z̄i−zi‖22/µi

}
. (38)

By (38), the optimal value of (27) is decreasing, and it must necessarily converge to zero during an infinite
sequence of consecutive NS (at least if µi is not dramatically mishandled, e.g. just kept bounded away
from 0).

Thus, the PBM is convergent provided that ( z̄i , ᾱi ) is still a feasible solution of (34) (in the (z, α)-
space) at iteration i + 1, and, of course, ( zi , αi ) ∈ Bi+1. This immediately suggests the two standard
forms of bundle management : i) ensure that ( z̄i , ᾱi ) ∈ Bi+1 (compression), ii) ensure that b ∈ Bi+1 for
all the b ∈ Bi such that θi,b > 0 (selection). Note that, by Carathéodory’s theorem, there always exist a
θi with at most n+ 1 positive variables; hence, both strategies yield a finite bound over the size of B, a
significant advantage—at least in theory—over the non-stabilized CPM.

Not unexpectedly, the practical side of bundle management is considerably more nuanced. For once,
(38) only refers to the “tail” of the algorithm, where x̄i has reached (very close to) some optimal x∗
and the PBM “only” have to prove this by driving both ‖z̄i‖ and ᾱi to 0. This all but ignores the
“cruise” phase where xi is closing in to x∗. For that, (7) would imply a reasonably fast convergence
in the number of SS, with of course the issue of how many NS occur between two consecutive SS. Even
ignoring this, the rate of convergence implied by (38) is sublinear, i.e., rather slow. This is one of the
main reasons why iteration complexity of the PBM is O(1/ε3) [2, 61], even worse than the O(1/ε2) that
any black-box algorithm of this type necessarily has to have. This is so bad a convergence rate as to make
it completely impractical to obtain anything more than moderately accurate solutions. Indeed, the PBM
with “extreme” aggregation Bi+1 = B̄i is a minor variant of a deflected subgradient-type method [22]; in
particular, it is closely related [7] with the so-called Volume Algorithm [8], that had spurred considerable
interest in combinatorial optimization circles at the turn of the millenium. It had actually been known
already [1] that these subgradient-type methods have—in theory—a working stopping criterion, which is
important in some applications. However, (38) reveals how the advantage is only theoretical: in practice,
convergence of subgradient methods is so slow that the only feasible stopping criterion is a limit on the
number of iterations. Although they can still be attractive in some applications, this is only true under
very mild requirements on the required accuracy (say, 1e-3 to 1e-4 relative) [41].

It is revealing to contrast this behaviour with that of the CPM as numerically illustrated in §2.1.
There, although the algorithm has an erratic behaviour in the “cruise” phase (apparently failing to
exhibit any convergence at all), the “tail” of the process is pleasingly fast. This is due to the fact that
once enough information is accrued in B to make fB a good enough model at some optimal solution, the
algorithm can efficiently close in to that. Such accumulation of information in B is essentially destroyed
by extreme aggregation Bi+1 = B̄i: although the process remains generally convergent, the speed can be
as abysmal in practice as (38) predicts. In other words, extreme aggregation can hurt a BM precisely in
what could otherwise be a strong point of its. Similarly, discarding a pair ( zb , αb ) as soon as θi,b = 0
may considerably hurt performances; more appropriate (heuristic) rules are to discard it after that the
multiplier has been zero for some (say, 20) consecutive iterations. In some tests, the “fast tail phase”
has proven rather delicate, being impaired by even mildly aggressive selection rules or by imposing even
seemingly loose limits on the maximum size of B [43]. Hence, at least in some applications it is better
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to shoulder the substantial burden of solving MP with a large B than trying to keep the latter small, as
any reduction in MP cost is largely outweighed by the corresponding decrease of convergence speed.

Unfortunately, all these aspects are only characterized experimentally; all convergence arguments—
and efficiency estimates—on PBM hinge on extreme aggregation. The complexity estimate can actually be
improved to—the still sublinear—O(log(1/ε)(1/ε)) with further assumptions on f (in particular, strong
coercivity at the unique optimum) [28], but still the same bound holds for B̄i and for any arbitrarily large
Bi; hence, the theoretical worst-case analysis seems unable to capture some important aspects of the
practical behaviour of BM, (fortunately) substantially underestimating convergence speed. This is not
helped by the fact that convergence arguments, as discussed in §2.1, deal with the sequence of SS and with
sub-sequences of consecutive NS between two SS as two loosely related processes; after a SS is declared
the algorithm can basically be restarted from scratch, as the arguments allow to completely change B
then. One recent effort to devise a convergence analysis of the PBM as an unique process is based on (in
principle) avoiding the dichotomic distinction between SS and NS [2]. This hinges on the introduction of
the—apparently weird—merit function ζµ(x) = 2f(x)−φµ(x), with φµ the Moreau–Yosida regularization
(9). The only nice properties of ζµ are that ζµ ≥ f and ζµ(x) = f(x) ⇐⇒ x is optimal for (1); otherwise,
the function is nondifferentiable and nonconvex. However, its upper approximation ζB,µ ≥ ζµ obtained
by replacing f with fB in (8) is precisely computed by solving (27), comprised the constant term “−f(x̄)”

that is usually ignored in the analysis of the PBM. Once xi is produced by the MP and f(xi) and zi

are computed by the oracle, it is possible to define the problem of minimizing ζB,µ(x) for x ∈ [x̄i,xi].
Actually, doing so would require knowing the value of f at all points of the interval; this can be replaced
by an upper model of f on the interval, typically λf(x̄i) + (1− λ)f(xi) for x = x(λ) = λx̄i + (1− λ)xi.
This allows to define a further upper approximation of ζB,µ, and x̄i+1 can be easily chosen as the minima
of this function on the interval [x̄i,xi]; doing so one can prove that eventually ζµ(x̄i) − f(x̄i) → 0, i.e.,
global convergence. This is potentially interesting in that x̄i+1 can be chosen “in between” x̄i and xi,
thereby generalizing the PBM at least insomuch as f(x̄i+1) > f(x̄i) can happen. Unfortunately, the
approach—at least with the natural upper model—turns out to actually only do either SS or NS. Also,
the efficiency analysis still uses arguments very close to (36), and therefore it does not seem of being any
better able of properly evaluating the effect of information accrual. Besides, the practical efficiency of
the method does not seem to be much different from that of the original PBM.

All in all, it can be argued that the currently available convergence and efficiency analyses fail to
properly capture some aspects of the BM that are important in practice. Yet, the dual viewpoint is
crucial for the understanding and the implementation of BM; this is even more so in the case where (1)
is itself a dual problem, as discussed next.

3.3 Duality in the original problem

One important motivation for (1) is the case where

f(x) = 〈x, b〉+ max
{
〈c− xA,u〉 : u ∈ U

}
, (39)

i.e., f is the Lagrangian function of the problem

max
{
〈c,u〉 : Au = b , u ∈ U

}
, (40)

w.r.t. the explicit constraints. Customarily U is assumed compact, so that f is finite-valued; this is
mainly to save on details, with extensions discussed in §4.3. Similarly, linearity of objective function and
constraints can be relaxed with most of the results carrying over, albeit at the cost of considerably more
cumbersome notation [72].

Evaluating f at some iterate xi requires solving the Lagrangian relaxation (39) of (40). Any of
its optimal solutions ui gives f(xi) = 〈c − xiA,ui〉 + 〈xi, b〉 and zi = b − Aui; note that this yields
αi = 〈zi,xi〉−f(xi) = −〈c,ui〉, a suggestive enough result. Indeed, the dual (24) of the MP of the CPM
then (heavily exploiting linearity) becomes

max
{
c
(∑

b∈Bi ubθb
)

: A
(∑

b∈Bi ubθb
)

= b , θ ∈ Θ
}

. (41)

Hence, one is in fact considering the convex set UB = conv( {ub : b ∈ B } ), which would be an inner
approximation of U if the latter were convex, and is solving (40) with U replaced by UB. Clearly, “with
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an infinitely large B” one would be solving the convexified relaxation of (40)

max
{
〈c,u〉 : Au = b , u ∈ conv(U)

}
, (42)

equivalent to (40) if U is convex, and in some sense its best possible convex relaxation otherwise. Then,
(41) is the inner approximation (a restriction) of (42) corresponding to the finite subset of solutions
collected so far. The optimal value of (41) is thus a lower bound on that of (42), just as that of
(3) is a lower bound on f∗; indeed, the Lagrangian Dual (LD) (1) of (40) is equivalent to its convexified
relaxation (42), a celebrated result [72] with many useful consequences [37]. This allows to give interesting
interpretations to the results of §3.1, starting with the fact that the linearization error (21) becomes
αb(x̄) = 〈c − x̄A,u(x̄)〉 − 〈c − x̄A,ub〉, where u(x̄) is (any one of) the optimal solution of (39) with
x = x̄; basically, how much sub-optimal is the solution ub w.r.t. the optimal one u(x̄) with the Lagrangian
costs (sometimes called reduced costs) c− x̄A corresponding to the current point x̄.

Hence, the LD (1) of (42)/(40)—which is the same, as the LD cannot distinguish a problem from its
convexified relaxation—provides a way to solve (42) by iteratively accumulating solutions ui ∈ U and
explicitly constructing (the relevant part of) its feasible region. If, say, U is a finite set, then conv(U) is
a polyhedron and only the finite set of its extreme points is required to fully represent it; hence, the LP
(41) with a (possibly, very) large B is actually equivalent to (42). This is known as the Dantzig-Wolfe
reformulation of (42), and it is well-known that solving the LD by the CPM is equivalent to solving (42)
by the Dantzig-Wolfe decomposition algorithm [37]. The Dantzig-Wolfe reformulation has “few” (n+ 1)
constraints, but in principle exponentially many variables (columns in the LP); thus the Dantzig-Wolfe
decomposition algorithm is also referred to as Column Generation (although the latter concept is in some
sense slightly more general) [27]. Stabilizing the CPM is therefore also known as stabilizing the Column
Generation [11,12]. For instance, for the PBM one can re-write (27) as

max
{ ∑

b∈Bi(cub)θb + 〈x̄, z〉 − 1
2µi || z ||22 : A

(∑
b∈Bi ubθb

)
− b = z , θ ∈ Θ

}
,

or, even more tellingly, as

max
{
〈c,u〉+ 〈x̄, b−Au〉 − 1

2µi ||Au− b ||22 : u ∈ U i
}
. (43)

(with U i = UBi). Thus, the PBM can be read from the viewpoint of (42) as an augmented Lagrangian
combined with an inner linearization approach where U is substituted by its approximation U i. The
aggregated pair ( z̄i , ᾱi ) is then associated with the point

ūi = u(θi) ∈ conv(U) with u(θ) =
∑
b∈B u

bθb (44)

by z̄i = b−Aūi and ᾱi = 〈c− x̄A,u(x̄)〉− 〈c− x̄A, ūi〉; convergence of the PBM can be read as the fact
that { ūi} → u∗, with the latter optimal to (42) (an easy but instructive connection to formally prove).

It is, however, useful to delve a bit further into the equivalence between (1) and (42)—with the f
of (39)—as doing so requires to introduce useful concepts, primarily the Fenchel’s conjugate f∗(z) =
supx{ 〈z,x〉 − f(x) } of f . The function f∗ is convex by definition, even if f is not, and closed under
very mild assumptions on f . The bi-conjugate f∗∗ is the (closed) convex envelope of f , i.e., the smallest
(in set-inclusion sense) closed convex function g such that epi(g) ⊇ epi(f); clearly, if f is closed convex
then f∗∗ = f . Geometrically, f∗ characterizes all the affine functions supporting epi(f), i.e., basically its
(approximate) subgradients; indeed, a fundamental property of f∗ is

z ∈ ∂εf(x)⇐⇒ x ∈ ∂εf∗(z)⇐⇒ f(x) + f∗(z) ≤ 〈z,x〉+ ε (45)

for each ε ≥ 0 [57, Proposition XI.1.2.1]. Coupled with Fenchel’s inequality 〈z,x〉 ≤ f(x) + f∗(z) for
all z, x, this gives 〈z,x〉 = f(x) + f∗(z) ⇐⇒ z ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(z); the immediate consequence
is that αb = 〈zb,xb〉 − f(xb) = f∗(zb) (= −〈c,ub〉 for (39)). Also, since (f(·+ x̄))∗(z) = f∗(z)− 〈z, x̄〉
and (f(·) − v)∗(z) = f∗(z) + v, one has for the translated function fx̄(d) = f(x̄ + d) − f(x̄) that
f∗x̄(z) = f∗(z)−〈z,x〉+f(x̄) (≥ 0 by Fenchel’s inequality). Hence, αb(x̄) = αb−〈zb, x̄〉+f(x̄) = f∗x̄(zb)
(cf. (21)). Thus, clearly all dual problems of §3.1 are dealing with f∗/f∗x̄, but when f is (39) they are
also dealing with (42). The link is made explicit by the (opposite of the) value function of (42)

ν(z) = −max
{
〈c,u〉 : b−Au = z , u ∈ conv(U)

}
, (46)

in fact ν∗(x) = max
{
〈z,x〉+ max

{
〈c,u〉 : b−Au = z , u ∈ conv(U)

}}
= max

{
〈c,u〉+ 〈x, b−Au〉 : u ∈ conv(U)

}
= f(x) .

With the obvious f∗(000) = −f∗, this confirms that the LD (1) of (40) is equivalent to its convexified
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relaxation (42): ν(000) = −f∗, with the change in sign only due to the insistence on minimization typical
of convex optimization. Linearity of the objective function is by no means a crucial ingredient: with
a generic objective function c(u) in (40), the LD (1) is equivalent to max

{
c̃(u) : Au = b

}
, where

c̃ = (c + ıU )∗∗. The result easily extends to inequality constraints Au ≤ b, yielding sign constraints
x ≥ 0 in (1); the generic nonlinear case A(u) ≤ b requires considerably more complex notation, even in
the convex case, although the results are in the same vein [72].

Thus, the conjugate f∗ allows to express in a general way primal/dual relationships that would seem
to be specific of the Lagrangian case (39). In particular, one can consider the (apparently weird) problem

min{ f∗(z) : z = 000 } (47)

as the dual of (1). This is quite a reasonable dual: its optimal value is (−) f∗, and it deals with dual
objects, as z ∈ dom f∗ if and only if z ∈ ∂f(x) for some point x (cf. (45)). Furthermore, the Lagrangian
relaxation of (47) w.r.t. the constraints “z = 000”, using x̄ as Lagrangian multipliers, is

inf{ f∗(z)− 〈z, x̄〉 } = (f∗)∗(x̄) = f(x̄) . (48)

Thus, the minimization in (48) is the equivalent to the maximization in (39): a Lagrangian relaxation
that has to be solved to find the optimum z (respectively u), which is (provides) the subgradient. All
interpretation of, say, the PBM as an inner linearization approach, where the computation of f(xi)
provides a new point ui that enlarges UB, can be recast in terms of generating an inner approximation
of epi f∗, without a need for any special structure in f . This is described in some detail in the next
section, in which conjugacy arguments—in particular Fenchel’s duality—are used to devise more general
stabilization devices than the proximal and trust region ones. Yet, it is clear that the dual interpretation
of BM is particularly useful for their applications to Lagrangian optimization (cf. [5, 6, 11, 12, 15, 16, 20,
31, 33, 38–40, 42, 43, 46, 55, 67, 71, 83, 89, 91, 98] among the many others), because then generated dual
information has a direct and crucial algorithmic use (e.g., [8, 9, 14,21,30,32,37,44]).

3.4 Generalized stabilization

As the previous section showed, devising and analysing BM requires—or at least significantly benefits
from—considering the dual aspects of all involved concepts, starting from the MP. This would seem to
make it harder to use less simple stabilizing terms, like trust-region constraints in any norm that is not
L1, L2 or L∞ or penalty functions that are not either piecewise-linear or convex quadratic, just because
then the dual of the MP cannot be obtained with familiar LP or QP duality. Yet, it is intuitively clear
that these should in principle work as well (if not better) than the simple ones. Furthermore, there
can be good reasons for wanting to use different stabilizing terms, which requires being able to express
dual relationships beyond LP and QP. Being this a convex setting Lagrangian duality would seem to be
the natural recourse, but its max/min form is more cumbersome than closed-form duals with only dual
variables. The alternative is Fenchel’s Duality, mirably expressed by

infx
{
f1(x) + f2(x) } = − infz

{
f∗1 (z) + f∗2 (−z) } , (49)

which holds under mild assumptions (f1 and f2 closed convex and the intersection of their domains
nonempty). Note the “−z”, which comes from the standard form of the conjugate of a sum

( f1(·) + f2(·) )∗(000) = infz1,z2
{
f∗1 (z1) + f∗2 (−z2) : z1 + z2 = 000 }

and that could not be noticed in §3.1 because the stabilizing terms are radially symmetric (‖z‖ = ‖−z‖).
Thus, one may consider the Generalized BM (GBM) with a generalized stabilization term Dµ [36], i.e.,
the MP

di ∈ argmin
{
f i(x̄+ d) +Dµi(d)

}
, (50)

and immediately derive its (Fenchel’s) Dual

z̄i ∈ argmin
{

(f i)∗(z) + 〈z, x̄〉+D∗µi(−z)
}
. (51)

This becomes more familiar when using fB = f̌B, as for (2) one has

f̌∗B(z) = min
{∑

b∈B α
bθb :

∑
b∈B z

bθb = z , θ ∈ Θ
}

(52)
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which, with (say) Dµ(d) = µ‖d‖22/2 ≡ D∗µ(z) = ‖z‖22/(2µ) immediately reproduces (27). For the
Lagrangian case (39), (51) becomes (cf. (43))

ūi ∈ argmin
{
〈c,u〉+ 〈x̄, b−Au〉 −D∗µi(Au− b ) : u ∈ U i

}
(again, note the change of sign in z = b−Au), or, in “explicit form”

min
{ ∑

b∈Bi(cub)θb + 〈x̄, z〉+D∗µi(−z ) : A
(∑

b∈Bi ubθb
)
− b = z , θ ∈ Θ

}
;

a generalized Augmented Lagrangian of (42), with D∗µ in the second-order term. Conjugacy arguments
allow to derive primal-dual relationships that do not depend on the choice of Dµ (or fB, for that matter),
such as

−z̄i ∈ ∂Dµi(di) and di ∈ ∂D∗µi(−z̄i)

z̄i ∈ ∂f i(x̄+ di) and x̄+ di ∈ ∂(f i)∗(z̄i)

f i(x̄+ di) + (f i)∗(z̄i) = 〈z̄i, x̄+ di〉 and Dµi(di) +D∗µi(−z̄i) = −〈z̄i,di〉 .

These generalize most of the relationships that are needed to prove convergence of a PRB; for instance,
one can prove the suggestive

∆i = f i(x̄+ di)− f(x̄) = (f i)∗(z̄i)− f∗(zi) + 〈zi − z̄i, x̄+ di〉

(with zi ∈ ∂f(xi = x̄+di)), which gives a dual interpretation to the SS condition (7). Note, however, that
not all the relevant relationships of the PBM generalize; most notably, di = −z̄i/µi is not true in general,
which prevents using some important arguments (basically, a GBM is not necessarily a subgradient-type
method in the same was as the PBM is). Yet, convergence can still be proven, provided of course that
Dµ has the right properties; those proposed in [36] are nicely symmetric w.r.t. the conjugacy operation:

1. ∀µ > 0, Dµ(000) = 0 and 000 ∈ ∂Dµ(000) ≡ D∗µ(000) = 0 and 000 ∈ ∂D∗µ(000);

2. ∀µ > 0 and ε > 0, lev(Dµ, ε) is compact and 0 ∈ int lev(Dµ, ε) ≡
lev(D∗µ, ε) is compact and 0 ∈ int lev(D∗µ, ε);

3. ∀µ′ ≥ µ > 0, Dµ ≤ Dµ′ ≡ D∗µ ≥ D∗µ′ ;

4. limµ→0Dµ(d) = 0 ∀d ≡ ∀ε > 0, limµ→0 inf{D∗µ(z) : ‖z‖ ≥ ε } = +∞.

That is, both Dµ and D∗µ must be non-negative and have bounded level sets with nonempty interior.
Of course, some properties are only symmetric insomuch as it is allowed by conjugacy: Dµ has to be
increasing in µ and converge pointwise to the constant zero function as µ → 0, which means that D∗µ
has to be decreasing in µ and converge “uniformly” to the indicator function of {000 } as µ→ 0. That is,
Dµ becomes less and less stabilizing as µ→ 0: (50) becomes more and more like (3), hence (51) becomes
more and more like (24) (z̄i is constrained to remain closer and closer to 000). It is easy to see that
these properties are respected both by the proximal and by the trust-region stabilization; in particular
Dµ(d) = ı{d : ‖d‖1≤1/µ } ≡ D∗µ(z) = ‖z‖∞/µ and Dµ(d) = ı{d : ‖d‖∞≤1/µ } ≡ D∗µ(z) = ‖z‖1/µ (if a norm
‖·‖ is used in the primal, then its dual norm ‖·‖∗ appears in the dual). Thus, (50)/(51) cover both the
TRBM and the PBM, as well as with stabilizing terms that behave both as a distance and as the indicator
of a ball. Also, one can have a trust region in the dual, such as D∗µ(z) = ı{ z : ‖z‖∞≤µ } ≡ Dµ(d) = µ‖z‖1,
a setting not really considered so far.

The above properties are the basic ones, but other assumptions are required to closely reproduce the
convergence properties of the PBM. For instance, Dµ strongly coercive (lim‖d‖→∞Dµ(d)/‖d‖ = +∞),
which is equivalent D∗µ finite everywhere, ensures that (50) is always bounded below/(51) is nonempty.
The assumption can be avoided if boundedness is guaranteed in other ways, the simplest one being that a
lower bound f ≤ f∗ is known and explicitly inserted in Bi via the pair (000 , f(x̄i)− f ); in the case of (39)

this is equivalent to inserting in Bi a u ∈ conv(U) such that Au = b. Also, smoothness in 000 is important
for the properties of the algorithm, although not symmetrically between Dµ and D∗µ. In particular,

∇Dµ(000) = 000 (which is equivalent to strict convexity of D∗µ in 000) ensures that di = 000 implies that x̄ is
optimal for (1); if Dµ is not differentiable in 000 the algorithm is not guaranteed to converge to an optimum
of the problem, and this has to be ensured by forcing µi → 0 along iterations. Instead, smoothness of D∗µ
in 000 (which is equivalent to strict convexity of Dµ in 000) is crucial for proving convergence under “extreme
aggregation”, directly generalizing (36); the results can actually be strengthened somewhat by requiring
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that the dependency on µ is “simple”, i.e., that Dµ = µD ≡ D∗µ = D∗/µ for some fixed D/D∗ with the
above properties. With a nonsmooth D∗µ, in principle information cannot be discarded from B like for
the CPM. Practical approaches to discard some information exist—it is always possible to entirely reset
B at each SS—but no finite bound on |B| can be established (which may not be too much of an issue in
practice due to the possibly dire consequences of too aggressive removals, cf. §3.1).

All in all, (more or less strong) convergence results are available for many choices ofDµ/D∗µ, potentially
allowing to adapt stabilization to the application at hand. For instance, piecewise-linear stabilizing terms
with “few” pieces can be used to try to obtain a stabilization effect close to that of the PBM without
paying the price of a quadratic MP [12]. Often the computational results show that the PBM has better
practical convergence behaviour, and therefore is preferable [46]; however, the cost of making the MP
a QP can be so high that piecewise-linear functions result in better running times [40, 43]. Arguably,
Fenchel’s duality would not have been necessary to use piecewise-linear functions, as the corresponding
MP are LP ones; however, other forms of nonlinear stabilization have been proposed. For instance,
Bregman functions [18] with the form Dx̄(d) = ψ(x̄ + d) − ψ(x̄) − 〈∇ψ(x̄),d〉 with ψ fixed, strictly
convex, differentiable and with compact level sets, can be used to implicitly express the set X via a
barrier-like approach, thus possibly making the MP easier to solve [64]. Also, other stabilization terms
have been proposed in the context of solving (42) that could be adapted for GBM, such as the smooth
approximations of ‖·‖1 [84] (below, left) and of ‖·‖∞/µ [52] (below, right, for z ≥ 0)

D∗µ(z) =
∑
i

{
z2
i /(2µ) if − µ ≤ zi ≤ µ
|zi| − µ

2 otherwise
, D∗µ(z) = ln

∑
i e
zi/µ .

Thus, quite a variety of stabilization terms can be employed, offering a vast trade-off between the the-
oretical/practical convergence properties of the BM and the cost of the MP. We also mention that a
somehow more general approach is proposed in [80], where BM are interpreted, a-la (47), as the problem
of computing f∗(000). The information provided by the oracle is used to construct the epigraph of f∗B, an
inner approximation of the epigraph of f∗ (cf. (52)), and a MP is solved that finds the closest point of
epi f∗B to (000 , 0 ) under a general norm ||| · |||. The GBM can be interpreted as an instance of this process
where the norm is separable between the subgradient component and the linearization error component,
i.e., ||| ( z , α ) ||| = D∗( z ) + |α |, whereas the approach of [80] does not require this assumption. On the
other hand, several important practical aspects of the method are not extensively discussed, and there is
no computational indication that using more complex norms can significantly improve performances.

We finish this section mentioning that a Generalized DSBM (cf. §2.3) should be possible with

min
{
f i(x̄+ d) +Dµi(d) : f i(x̄+ d) ≤ li

}
. (53)

Somewhat surprisingly, to derive a meaningful dual it is simpler to start with Lagrangian duality (as
opposed to Fenchel’s)

maxρ≥0

{
− ρli + min

{{
(1 + ρ)f i(x̄+ d) +Dµi(d)

}}
=

[−] minρ≥0

{
ρli + (1 + ρ)(f i)∗(z/(1 + ρ)) + 〈z, x̄〉+D∗µi(−z)

}
,

although in the second step one does apply (50)/(51) (together with standard properties of the conjugate,
among which (γf(·))∗(z) = γf∗(z/γ) for γ > 0). Then, using (2)/(52) for fB = f̌B one gets

min ρli + (1 + ρ)
∑
b∈B α

bθb + 〈z, x̄〉+D∗µi(−z)∑
b∈B z

bθb = z/(1 + ρ) , θ ∈ Θ , λ ≥ 0 ,

that via the (nonlinear) rescaling θ ← (1 + ρ)θ finally becomes

min ρli +
∑
b∈B α

bθb + 〈
∑
b∈B z

bθb, x̄〉+D∗µi

(
−
∑
b∈B z

bθb
)∑

b∈B θ
b = 1 + ρ , θ ≥ 000 , ρ ≥ 0 ,

readily generalizing (34). To the best of our knowledge, this derivation is new; convergence of the GDSBM
has not yet been firmly established, although it should follow easily enough by combining [36] with [26].

One property of all the stabilizing approaches discussed so far is that they are completely independent
on the specific choice of f , comprised the fact that is has, or not, the form (39). While this is some sense
an advantage, it also means that the stabilizing terms are not, on the outset, capable of exploiting any
available information about the form of f . However, besides the stabilizing term Dµ, (50)/(51) also
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depend on the model fB. So far we have mostly assumed the use of the cutting-plane model f̌B, but most
of the convergence arguments only require very few specific properties from fB [36]. Indeed, the model
can be chosen to exploit specific properties of f , as discussed in the next section.

4 Alternative models

This section is devoted to improvements of the BM that pertain to using “better models” of f . Since
all these are, in essence, orthogonal to the details of the stabilization, we will only present them in the
context of the standard PBM (which is where, actually, they have for the most part been discussed), with
the understanding that they could be applied to the other forms with some (possibly not entirely trivial)
adjustment of the convergence analysis.

4.1 Quadratic models

Following well-established approaches in nonlinear optimization, the first idea that would likely spring to
mind is to use quadratic models of f , in order to capture its second-order behaviour. As already remarked,
this is possible using sophisticated tools that are beyond the scope of this treatment (cf. e.g. (11)). Yet,
some attempts have used simpler techniques that are based on the concept that fB should not “deviate

too much” from f̌B.

One such model is the piecewise-quadratic [3]

f̆B = max
{
qb(x) = f(xb) + 〈zb,x− xb〉+ εb‖x− xb‖22/2 : b ∈ B

}
,

i.e., the pointwise maximum of the quadratic expansions qb of f generated at each xb; note that, unlike
for f̌ , this clearly requires keeping the xb in B. This is in general not a valid lower model of f , unless
all εb = 0 in which case it falls back to f̌B; yet, it is easy to compute “small enough” εb such that
f̆B(xb) ≤ f(xb) for all xb, i.e., the model never knowingly overestimates f . Actually, it is sufficient to
guarantee the property only for a subset of the previous iterates, possibly only the current stability center
x̄. The model can be translated w.r.t. x̄, although this now requires

ᾰb = αb − εb‖x̄− xb‖22/2 and z̆b = zv + εb(x̄− xb) ,

which allows to define the “doubly-stabilized” MP

min
{
v + µi‖d‖22/2 : v ≥ εb‖d‖2/2 + 〈z̆b,d〉 − ᾰb b ∈ Bi , γi‖d‖22 ≤ 2

}
having both a proximal term weighted with µi and a trust region one governed by γi. The rationale
for the trust region in the L2 norm is that the problem is a quadratically constrained QP anyway, so
there is no significant penalty in an extra quadratic constraint. The MP is actually a Second-Order Cone
Program (SOCP); this is more easily seen computing its dual

min
{

‖
∑

b∈Bi z̆
bθb‖22

2(µi+ρ+
∑

b∈Bi θbεb)
+
∑
b∈Bi ᾰbθb + ρ

γi : θ ∈ Θ , ρ ≥ 0
}
,

where the apparently nasty fractional term in the objective function can be transformed into a rotated
SOCP constraint with a well-known reformulation trick. Hence, the MP can be solved with off-the-
shelf IP methods, at a cost comparable with a convex QP of the same size. All this allows to define a
convergent BM, whose two stability parameters can be quite freely managed: indeed, as soon as at least
one εb is strictly positive, one can even take µi = ρi = 0, as the quadratic model is “self stabilizing”.
The convergence arguments follow the standard pattern of BM; the only nontrivial step is aggregation,
as together with z̄i and ᾱi one must also compute a x̄i to match, which requires some appropriate but
overall simple computation. While the results seemed to show that this model was in fact capable of
improving practical performances w.r.t. a standard PBM, this happened only with functions f that had
the same piecewise-quadratic nature as f̆B.

Another recent take on the approach [55] is different in two key aspects: i) it insists in having only
one quadratic term by modifying the proximal term in (26) into dTHid, a-la (11), and ii) it insists on not
underestimating the cutting plane model too much. The basic formula can be written in a “poorman’s”
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setting (cf. §3.2), where one has the aggregated linearization ( z̄i , ᾱi ) and just one other linearization
( zi , αi ); then,

〈z̄i,d〉 − ᾱi + 1
2d

THd ≥ 〈zi,d〉 − αi − ε ∀d ∈ Rn ≡ H � 1
2(αi−ᾱi+ε) ( z̄i − zi )( z̄i − zi )T . (54)

Note that ᾱi ≤ αi + ε must hold for (54) to have any chance to hold (set d = 000), i.e., the scaling term
must be positive; apart from that ε is “free” and can serve as a stabilization parameter. One can then
build a SemiDefinite Program (SDP) with as many semidefinite constraints of the form (54) as there are
elements in B to find the least-curvature H that ensures that 〈z̄i,d〉 − ᾱi + 1

2d
THd ≥ f̌ i(d) − ε; this

can be shown in simple cases (f convex quadratic) to be reasonably related with the Hessian. Because
solving the SDP at each step would be too costly, an approximate solution can be obtained by computing
the Singular Value Decomposition of an appropriate matrix (think that with z̄i − zb as columns) and
taking “a few” of the columns corresponding to the largest singular values. This has been shown to be
quite successful in improving practical convergence speed of the BM in one application.

Albeit interesting, the previous two models are “general-purpose”: they do not make any assumption
on f , and therefore arguably cannot exploit any of its specific properties. In the next sections we will
instead describe models that exploit different forms of structure in f .

4.2 Disaggregate models

Perhaps the most frequent structure in f is the sum one, i.e., f(x) =
∑
k∈K fk(x) where K is a finite

index set. A prolific source of this kind of problems is the Lagrangian one, in which U in (40)—or, for
that matter, conv(U) in (42)—is a Cartesian product: U =

⊕
k∈K Uk, so that

max
{ ∑

k∈K〈ck,uk〉 :
∑
k∈KAkuk = b , uk ∈ Uk k ∈ K

}
(55)

for u = [uk ]k∈K, and therefore

f(x) = 〈x, b〉+
∑
k∈K

[
fk(x) = max

{
〈ck − xAk,uk〉 : uk ∈ Uk

} ]
. (56)

For each k ∈ K, any optimal solution uk(x) of (56) provides the individual function value fk(x) =
〈ck − xAk,uk(x)〉 and the individual subgradient zk = −Akuk(x) ∈ ∂fk(x). We immediately remark
that there is a small (and intended) inconsistency between (56) and the original definition, in that in the
former there actually are |K|+ 1 components of the sum, comprised the linear one 〈x, b〉; clearly such a
term can (and should) be dealt with in a specific way, as discussed in details in §4.3. Disregarding this
point for the time being, one could obviously define the aggregated function value and subgradient out
of the individual fk(x) and zk, and then fall back to the previously developed theory. However, there is
clearly another alternative: defining individual models for each component, say the cutting-plane ones

f̌ ik(x) = max
{
〈zbk,x〉 − αbk : b ∈ Bik

}
≤ fk(x) (57)

depending on individual bundles Bik = { (zbk, α
b
k = 〈zbk,xb〉 − fk(xb) = f∗k (zbk) }. We can still refer

to B = [Bk ]k∈K as “the bundle”, and still avoid to distinguish between the un-translated αbk and the
linearization errors αbk(x̄) = αbk −〈zbk, x̄〉+ fk(x̄) (cf. (21)) unless strictly necessary. It is then immediate
to define the disaggregate master problem

min
{
〈b,d〉+

∑
k∈K vk + µi

2 ‖d‖
2
2 : vk ≥ 〈zbk,d〉 − αbk b ∈ Bik k ∈ K

}
(58)

using the disaggregate model instead of the original (aggregated) one. It is quite obvious that, for the
same set of information produced by evaluating f (all the fk), (58) provides a better representation of f
than (26). This is clearer when comparing the dual of (58)

min
{

1
2µi ‖b+

∑
k∈K

∑
b∈Bi

k
zbkθ

b
k‖22 +

∑
k∈K

∑
b∈Bi

k
αbkθ

b
k : θk ∈ Θk k ∈ K

}
(59)

with (27): in fact, its is obvious that the latter is the restriction of the former obtained by imposing
that all the multipliers θbk corresponding to all the individual subgradients attained at the same iterate
b have the same value. Intuitively, “gluing together” the individual zbk into one aggregated zb just
because they have happened to have been produced at the same iteration is rather arbitrary, as they are
in fact independent information about independent functions. Analogously, individual aggregated pairs
( z̄ik , ᾱ

i
k ) can be obtained out of the solutions θik of (59), and independently inserted in each Bik; despite

all them having been obtained with multipliers corresponding to one specific MP solution, there is no
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reason why two different pairs should be later on constrained to each other. Nowhere this is clearer than
in the Lagrangian case (56): (59) is equivalent to

[〈x̄, b〉+] max
{ ∑

k∈K〈ck − x̄Ak,uk〉 −
1

2µi ‖
∑
k∈KAkuk − b‖22 : uk ∈ U ik k ∈ K

}
. (60)

In other words, the feasible region of (60) is a Cartesian product of convex hulls, whereas that of the
aggregated (43) is the convex hull of a Cartesian product: it is very easy to see that the former set
(for, ideally, the same Bik) is much larger than the latter one. All this justifies why disaggregate BM
using (57) typically converge much faster than aggregated ones, all the rest being equal [6,14,43]; indeed,
convergence happens when enough information has been accrued that allows to express the optimal
solution, and disaggregate BM make much better use of the gathered information.

Of course, there is a negative aspect in using disaggregate models: the master problems are larger
(roughly, “by a factor of |K|”), and therefore potentially (much) more costly to solve. Therefore, the
trade-off between aggregated and disaggregate BM strongly depends on the relative weight of the MP
cost and of the fk computation cost. Often, the increase in convergence speed obtained by using a
disaggregate model is worth the extra MP cost. Indeed, by converging much faster the disaggregate
BM can actually end up collecting less information that the aggregated one (while making much better
use of it), so that the disaggregate MP simply does not have the time to become too large. However,
if the subproblems (56) are easy but “many”, the cost of the disaggregate MP can become by far the
computational bottleneck of the algorithm.

In order to face this issue, an intuitively promising approach is partial aggregation. That is, one
may partition K = K1 ∪ K2 ∪ . . . ∪ Kh into h disjoint subsets, and then define the corresponding partly
aggregated functions, subgradients and linearization errors. This is clearly possible, with the size of the
MP now increasing “only” of a factor of h, at the cost of some (but less than in the fully aggregated
case) arbitrary information aggregation. It is still unclear how to choose h, and how to distribute the
different components across the partition. Some experiments [82, Chapter 2] seemed to show a potential
for the approach, in that a small h was sufficient to significantly increases convergence speed w.r.t. the
fully aggregated case, becoming comparable to that of the fully disaggregate case as a fraction of the
latter’s MP cost. However, even within the same class of problems the trade-off was very dependent on
the specific type of instance, and it seemed hard to devise dependable guidelines. In this line of approach,
it might be useful if the partition could be dynamic; this is indeed possible, as advocated in [96]. By
arbitrarily choosing any Z ⊆ K one may insert in (58) partly aggregated cuts∑

k∈Z vk ≥ 〈
∑
k∈Z z

i
k,d〉 − (

∑
k∈Z α

i
k ) . (61)

Recent results [55] indicate that such an approach may be promising, in particular by using disaggregate
cuts for a small set of “critical” components (whose subgradients seem to vary rapidly, thus exhibiting
nondifferentiable behaviour), while all the remaining ones are aggregated into one component. A specific
application where this technique makes especially sense is two-stage stochastic programs, since there
a partly aggregated cut has a clear meaning in terms of sub-sampled estimate of the true subgradient
(cf. §5.2). It is not surprising, then, that good results have been reported, e.g. with a level-type BM [100].
For problems with fixed recourse, aggregation rules can be defined that benefit from information about
the function and exploit ideas already presented in the stochastic programming community, again with
a significant practical effect [95]. Yet, the implementation details required to achieve good results seem
to be rather dependent on the specific application; this therefore remains an interesting, but still wide
open, research line.

4.3 Constraints and easy components

The sum-funcion structure paves the way for further exploiting the specific structure of some of the
components. We have actually already seen this happening: the function (56) has the linear component
f0(x) = 〈x, b〉, which in the MP (58)/(60) is not treated like the other fk, but rather “directly inserted
in the model”. The principle is readily applicable each time one of the components has the appropriate
structure. That is, assume for simplicity that K = { 0 , 1}, where f1 is produced by a standard oracle,
whereas f0 is “easy” in the sense that it can be directly written into the MP :

min
{
f0(x̄+ d) + v1 + µi

2 ‖d‖
2
2 : v1 ≥ 〈zb1,d〉 − αb1 b ∈ Bi1

}
. (62)
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This is how f0(x) = 〈b,x〉 was dealt with in (58), and it is also the standard treatment of constraints in
BM: with f0 = ıX , this amounts to adding the constraints “x̄ + d ∈ X” to (8). Obviously, the general
assumption is that (62) is not much more costly to solve than (58), which happens e.g. when X is defined
by a “small” set of “simple” (say, linear or conic) constraints, as in the original (3). Clearly, a BM using
(62) necessarily has to work if a BM using (58) was: the MP has better (indeed, “perfect”) knowledge of
f0. Extension to any number of “easy” and “standard” component is immediate.

It is now appropriate to remark that constraints can be dealt with dynamically, so that a polyhedron
X represented by a very large (say, exponential) number of constraints can still be used under the
standard assumption that an efficient separation algorithm exist. A revealing case is that of a Lagrangian
component over a non-compact polyhedron, i.e.,

f0(x) = max{ 〈c0 − xA0,u0〉 : Ū0u0 ≤ ū0

}
(63)

with Ū0/ū0 matrix/vector of appropriate dimension, for which f0(xi) = +∞ can happen. This means
that one ray ωi of the polyhedron exists (and is identified by whatever LP solver is used to compute f0)
that is also an ascent direction, i.e., Ū0ω

i ≤ 0 and 〈c0 − xiA0, ω
i〉 > 0. Obviously, the very same ray

will prove unboundedness for any other x such that 〈c0 − xA0, ω
i〉 > 0; in other words, ωi defines the

constraint 〈c0, ω
i〉 ≤ 〈x, A0ω

i〉 that must be satisfied by all points in the domain of f0. Thus, each time
f0(xi) = +∞ a new constraint can be added to the MP that “cuts away” xi, thereby necessarily changing
its solution. Constraints are in fact a slightly different form of linearization describing epi f0, which we
can call “vertical” since the coefficient of v0 is 0, and can be added to Bi0 instead of the standard ones;
this only means that the corresponding dual variables θb in (27) do not participate to (have 0 coefficient
in) the simplex constraint. Assuming that the oracle only reports a finite set of rays (say, the extreme
ones) and that vertical linearizations are never removed from B0, then f0(xi) = +∞ can only happen
a finite number of times, and the BM is still provably convergent. Similarly, constraints describing any
polyhedron X for which a separation algorithm is available can be dynamically added to the MP whenever
xi /∈ X.

However, vertical linearizations/constraints are in some sense “more delicate”: removing or aggregat-
ing them is not as easy as with subgradients. Removal is possible with the usual rules—as soon as a SS
is performed, Bi can be entirely reset of either type of linearization—but no finite bound on |B| can be
established. Furthermore, all this only works under the assumption that the set of constraints is finite in
the first place. It is easy to see where the catch is by thinking to (1) in which f is “simple” (say, linear)
and X is given by a separation oracle only reporting vertical linearizations. If X is not a polyhedron,
the CPM would still work—actually, this is the very setting in which it has been defined [60]—but it is
completely possible that f(xi) = ∞ for all iterates xi. While this is not a problem for the CPM, it is
typically so for a BM, which is based on tests like (7) to manage the stabilization center. Hence, either
some mechanism is required that ensures that the BM obtains f(xi) <∞ “frequently enough”, or some
alternative test has to be employed. Customarily, BM dealing with “complicated” constraints assume
X = {x ∈ Rn : c(x) ≤ 0 }, where that both f and c are finite-valued; hence this does not exactly cover the
previous example. Note that c(·) can w.l.o.g. be taken as a scalar function, since any finite set of convex
constraints can be turned into one by taking their maximum, which is still convex (but nondifferentiable).
Finiteness of c(·) is crucial to implement infeasible BM, which can make good use of unfeasible iterates
c(xi) > 0; the required theoretical tool is the improvement function hx̄(x) = max{ f(x) − f(x̄) , c(x) }
such that x̄ solves the constrained (1) if and only if it is an unconstrained minimizer of hx̄, the opti-
mal value then being hx̄(x̄) = 0 [87]. Basically, a standard unconstrained BM—allowing, in particular,
aggregation—can then be used to minimize hx̄; subgradients of both f and c computed at previous iter-
ates are separately kept, analogously to (58), and transformed into subgradients of hx̄ by simple formulæ.
If an appropriate improvement in the value of hx̄ is attained, the stability center is changed; this also
changes the objective function, but again existing information—comprised aggregated one—can be used
to compute valid approximate subgradients to the new hx̄, allowing the method to continuously accrue
information as in the standard case. The algorithm can then be shown to converge; furthermore, if a fea-
sible iterate is ever produced, then all subsequent iterates remain feasible. Alternatively, filter techniques
can be used [59]. Under stronger assumptions on X, feasible BM can be constructed: for instance, [68]
requires knowledge (and hence, a fortiori, existence) of a Slater point xint such that c(xint) < 0. Hence,
whenever an unfeasible iterate xi is obtained, an interpolated point can be defined—not unlike in the IOA
(cf. §2.5)—in the segment [xint , x

i ] that is feasible, and therefore whose objective function value can be
used in the descent test. A similar approach has been used in [94] in the context of chance-constrained
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optimization; the specific advantage is that the computation of the chance constraint requires a costly nu-
merical procedure that can be ill-conditioned for “extreme” xi with very high or low probability, whereas
it is more reliable and efficient for points “in the middle”. Yet, for some applications experiments have
shown that infeasible starts can actually be beneficial [91, 99].

Returning to the original subject of this paragraph, it is clear that inserting f0 in the MP is not limited
to linear or indicator functions, but can be done whenever the MP remains “reasonably easy”. This is
often the case of Lagrangian functions, where the underlying Lagrangian subproblems can have special
structures that make their dual function manageable without resorting to linearizations. An interesting
example are nonlinear multicommodity network design problems with congestion costs, if only because
they have been tackled twice, once with an ACCPM [5] and once with a PBM [71]. In the problem, the
objective function is nonlinear because of many single-variable terms of the form k(t) = t/(c−t), where t is
the total flow on an arc of the underlying network and c is its capacity; this is the widely used Kleinrock’s
delay function. Once the linking constraints are relaxed, one is typically left with many single-variable
optimization problems of the form f(x) = min{ t/(c− t)− xt : 0 ≤ t < c } (the original problem being a
minimization one), each one depending on one single Lagrangian multiplier x; this immediately reveals
itself as the opposite of the conjugate of Kleinrock’s delay function, −k∗(x). Due to its simple form this
can be computed with a closed formula: k∗(x) = 1 + cx− 2

√
cx whenever x ≥ 1/c. Hence, f0 in (62) is

a sum of those terms. Directly inserting these in the MP results in a problem that is no longer a QP; to
address this issue, in [71] f0 is replaced with its second-order approximation around the current stability
center x̄i, resulting in a hybrid BM/Newton’s method. Only relatively minor changes are required in
the convergence analysis, all using well-understood techniques from smooth optimization (basically, an
appropriate line search); furthermore, the Newton’s term directly stabilizes the approach, removing the
need for the “artificial” proximal stabilization ‖d‖22. This is even less of an issue for ACCPM, whose MP
(16) is already not a QP: adding the terms corresponding to f0 in the KKT system of the IP method
(itself again basically Newton’s method) is easy. In both cases, inserting “exact” information about one
(many) component(s) of f in the MP is shown to significantly improve performances in practice.

The approach does not even require the conjugate being easy to compute: as advocated in [43], any
Lagrangian function whose form is “not more complex than that of the MP” lends itself to the treatment.
That is, consider

max
{
〈c0,u0〉+ 〈c1,u1〉 : Ū0u0 ≤ ū0 , u1 ∈ U1 , A0u0 +A1u1 = b

}
where f0 is again (63). The key is, again, duality: while the dual of (62)

min
{

1
2µi ‖b− z0 −

∑
b∈Bi

1
zb1θ

b
1‖22 +

∑
b∈Bi

1
αb1θ

b
1 − x̄z0 + (f0)∗(z0) : θ1 ∈ Θ1

}
may at first look intimidating, f∗0 is, basically, nothing else than the original Lagrangian subproblem: in
other words, the above can be rewritten as

max 〈c0,u0〉+
∑
b∈Bi

1
αb1θ

b
1 + 〈x̄, z〉 − 1

2µi ‖z‖22
z = b−

∑
b∈Bi

1
zb1θ

b
1 −A0u0 , Ū0u0 ≤ ū0 , θ1 ∈ Θ1

. (64)

The idea is therefore straightforward when seen in the dual MP: for the “standard” component the usual
linearization is employed, whereas the “easy” one is basically inserted unchanged in the (dual) MP. This
can be done beyond LPs; for instance, if the objective function c0(u0) were convex quadratic, then (64)
would still be a convex QP, hence roughly as hard to solve as the original MP. Again, any BM working with
an approximated model f

0
will a fortiori work if the “true” f0 is used, once a few minor details are taken

care of. Of course, trade-offs reveal themselves in practice: (64) may be more costly to solve, especially
at the beginning, but the part concerning f0 will never grow in size, as opposed to the part concerning f1.
Furthermore, by having an “exact” model for one component one can expect faster convergence, often
quite significantly so, as repeatedly reported in applications as diverse as multicommodity network design
problems [43], stochastic unit commitment problems [89], chance-constrained optimization [92] and SDP
relaxations for hard combinatorial problems [46].

4.4 Specialized dynamic models

Most (but not all) specialized models of §4.3 are “static”, in that all the information corresponding to
f0 is known at the beginning of the solution process. This is clearly not necessary, as the present section
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will show.

A specialized model is the basis of the Spectral BM (SBM) [56] for solving SDP. This starts with the
fact that the dual of the standard SDP

max
{
〈C,U〉 : AU = b , U � 0

}
under mild assumptions can be recast as the eigenvalue optimization problem

min
{
f(x) = 〈b,x〉+ λmax(C − xA)

}
,

with λmax(·) indicating the maximum eigenvalue of a matrix, a convex nondifferentiable function. Each
time f(x) is computed, by standard linear algebra techniques, any eigenvector w associated with the
maximal eigenvalue produces a subgradient z = b − A(wwT ); that is, ∂f(x) is spanned by all possible
such eigenvectors, and therefore f is differentiable only if the maximum eigenvalue has multiplicity one.
Rather than the standard f̌ , the SBM uses

fB(x) = max
{
〈b,x〉+ 〈C − xA,W 〉 : W ∈WB

}
,

with WB = {W = θW̄B+PBV P
T
B : θ+ tr(V ) = 1 , V � 0 }. At first read, one can take the columns of

the matrix PB as being the (orthogonalized) eigenvectors wb computed at previous iterations, and W̄B as
corresponding to the aggregated subgradient z̄i, although updating PB and W̄B at each iteration requires
some care. All in all, minimizing fB is a SDP, and a small-scale one if the size of PB is kept in check;
hence, it can be efficiently solved by IP methods. Clearly, adding a quadratic stabilizing term (or a trust
region in the L2 norm, for that matter) does not significantly change the computational cost of the MP.
However, note that the efficiency of the MP solution is strictly related to the fact that the main matrix
variable V has small size; this, for instance, may change if constraints x ∈ X (even simple bounds) are
present, requiring the use of nontrivial techniques [54]. Not surprisingly, using the specialized model is
much more efficient than using f̌B, and it can be competitive with IP methods in particular for solving
sparse large-scale SDP.

In the somewhat different context of Lagrangian functions of structured problems, a quite general class
of models has been proposed. The idea is that the standard Dantzig-Wolfe reformulation of conv(U),
which gives rise to the standard cutting-plane model (cf. §3.3), is not the only possible formulation
that lends itself to dynamic generation. Motivated by results on 0-1 reformulations of multicommodity
network design problems [39], general requirements have been defined for any other “large” formulation
of conv(U) = { u = Cθ : Γθ ≤ γ } that can be “constructed piecemeal” [40]. In this setting, the bundle
is B = (Bc,Br), where Bc is a subset of the variables θ (columns of Γ and C), and Br is a subset of the
constraints (rows in Γ) which impact at least one variable in Bc; this immediately defines the restrictions
θB, ΓB, γB and CB of the formulation. The first requirement is that any partial solution can always be
completed with zeroes, i.e., ΓBθ̄B ≤ γB and θ = [ θ̄B , 000 ] =⇒ Γθ ≤ γ; this immediately implies that

UB =
{
ν = CBθB : ΓBθB ≤ γB

}
⊆ conv(U) ,

and therefore that

fB(x) = 〈x, b〉+ max
{
〈c− xA,CBθB〉 : ΓBθB ≤ γB

}
is an alternative lower model of f . Hence, the MP can be defined that uses this model; again, this is
more easily seen in the dual, which is just (with the obvious notation)

max
{
〈c,u〉+ 〈x̄, b−Au〉 − 1

2µi ||Au− b ||22 : u = CiθBi : ΓiθBi ≤ γi
}

(cf. (43)). The other necessary assumption is that, once the oracle is called in xi and a new ui is
obtained, it can be efficiently used to update Bi. This can be stated (intentionally vaguely) as follows:
if ū ∈ conv(U) \ UB, it must be easy to update B to a set B′ ⊃ B such that there exists B′′ ⊇ B′ with
ū ∈ UB′′ . In plain words, one has to be able to see what are the missing variables and constraints in the
formulation, and add at least some of them; this is basically a “dynamic version of the easy components
approach”. It is then possible to develop a BM using this approach, which generalizes the Dantzig-Wolfe
decomposition/Column Generation; this has been proven efficient in several applications [39,86,89].
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4.5 Diminishing the MP cost

Many of the ideas discussed in the last sections lead to “large” MP; solving them can therefore easily
become the computational bottleneck. Although the increased convergence speed may still make these
large MP worthwhile, it is clear that techniques for lessening this computational cost could be crucial;
some notable developments are discussed here.

The first have to do with the fact that x can be a “very long” vector. For instance, in the Lagrangian
case (39), the constraints Au = b can be exponentially many (of course, with an attached efficient
separation routine), or anyway a very large number. Especially if the constraints are inequalities, though,
one can expect only a small fraction of them actually being active at optimality, which means that only
a small fraction of the components of x will be different from 0 at any optimal solution. One can then
define a Dynamic BM (DBM)—be it a PBM [10, 38, 44], a SBM [53], a ACCPM [5] or any other, even
with specialized models [43], and comprised subgradient-type methods [41]—that has, basically, a simple
active-set strategy on x. At the beginning, only a small subset of the variables (constraints in the dual)
is actually defined in the MP, which is therefore smaller and cheaper. An arbitrary number of iterations
can be performed with x restricted to the active set; then, occasionally—but surely if convergence in the
current subspace is detected—one has to check the entire subgradient to see if some components need
to be added to the active set. In the Lagrangian case, this simply amounts at verifying which of the
constraints (say) Au ≤ b are violated by the aggregated primal solution ūi (cf. (44)). If no components
are ever removed from the active set the DBM is trivially convergent: after a finite number of updates
the active set is the full space, and “true convergence” begins. Careful removal is also possible with mild
assumptions on the separation process [10], although in practice the technique works well even without
them. This has been shown to considerably improve performances, especially when the cost of the f
computation is low [38,41,43,44].

The approach of [67] rather deals with approximately solving MPs for sum-structured f (cf. §4.2).
The idea is (again and again) quite simple when seen from the dual viewpoint: each of the (for simplicity)
two components has distinct dual variables, say θ0 and θ1. It is then easy to implement a block descent
approach, where θ0 is kept fixed to some (feasible) value and θ1 is optimized, and then the roles are
reversed. This may also work when the θk are not convex multipliers, say as in (64), and potentially
when there are more than two, although to the best of our knowledge this has never been studied. From
the primal viewpoint, this means that one of the two models f

0
and f

1
, in turn, is substituted with its

aggregated linearization ( z̄ih , ᾱ
i
h ). This may allow to use specialized solvers that exploit the individual

structure of the two separate subproblems. For instance, f
0

may be the indicator function of a “simple”
set X, say a box, whereas f

1
may be the standard cutting-plane model; then, the first subproblem is the

optimization of a linear function on a box, whereas for the second specialized algorithms exist that are
more efficient in the unconstrained case [34] (although the latter algorithm specifically deals with box
constraints with a technique that is not entirely uncorrelated with the one we are discussing). A very
small number of iterations, down to only one, may be sufficient to construct a direction di that allows
to continue the BM, thus potentially reducing the MP cost. The approach may applied many different
structures, see e.g. again [54].

Finally, it is clearly always possible to specialise well-known approaches to the specific structure of
the MP. This is the case of [34] for active-set methods and of [74] for structure-exploiting IP methods
applied to the parallel solution of the disaggregate MP (58)/(59).

5 Inexact and incremental approaches

Overall, the computational cost of the BM depends on both the number of iterations and their cost, in
turn the sum of the MP cost and of the oracle cost. Clearly, reducing the number of iterations (improving
convergence speed) is of paramount importance to reduce the total cost, and it has been therefore the
focus of basically all the discussion so far. Indeed, often paying a larger MP cost to reduce the number
of iteration is worth, although of course the cost of the MP must also be kept in check (cf. §3.2, 4.2, 4.4,
4.5). What has not been discussed so far are methods to decrease the oracle cost. These would hardly
seem to be subject of a general treatment in BM, since they clearly depend on the specific application
giving rise to (1); however, general concepts of approximate oracle can be defined, whereby one loosens
the requirement that f(x) be computed exactly, and that z ∈ ∂f(x). This can be clearly beneficial, if
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only in the Lagrangian case (39) where the oracle is an optimization problem (but then again, any (1)
can be considered a dual problem, cf. (47)); allowing to solve it approximately should reasonably decrease
its cost. This is the subject of the present section.

5.1 Inexact approaches

The Lagrangian case is indeed a good one to inform the discussion: an approximate oracle for (39) (with
x = xi) might just compute any feasible solution ui ∈ U , hopefully a “good” one. Using ui instead of the
optimal solution ui yields a lower bound li = 〈c−xiA,ui〉+ 〈xi, b〉 ≤ f(xi), together with zi = b−Aui
such that zi ∈ ∂εif(xi) for the error εi = f(xi)− li ≥ 0. That is, such an approximated oracle delivers
ε-subgradients rather than subgradients, and lower approximations to the function value. Crucially, the
(say) cutting-plane model constructed with this information is still is a valid lower model, which makes
it surprisingly easy to define an Inexact BM (IxBM). In fact, assuming that εi → 0 “naturally” along
the iterations, there is basically nothing to do [63]. In other words, as in the case of subgradient-type
methods [22], what really counts for BM is the asymptotic maximum error ε∞ = lim supi→∞ εi: any
“large” error εi � ε∞ occurring in the early iterations can be automatically corrected as the algorithm
proceeds towards the optimum. This is an attractive feature in that, intuitively, it should not be required
that the function be computed with high accuracy at the beginning of the algorithm, while the error
reasonably need be reduced when approaching the optimal solution. However, such an asymptotically
exact oracle is not necessary: a BM can converge under the quite minimal condition that εi ≤ ε̄ < ∞,
with ε̄ fixed but not necessarily known. Of course, in this case one can expect nothing better than a
ε̄-optimal solution [22, Observation 2.7].

In order to ensure convergence, though, some modifications are necessary. This stems from the fact
that defining the linearization errors as αb(x̄) = li− [ lb + 〈zb, x̄−xb〉 ], i.e., using the lower estimates in
place of the function values f(x̄i) and f(xb), may lead to αb < 0. Indeed, zb is a (αb+εb)-subgradient of f
at x̄, with αb+ ε̄ ≥ αb+εb ≥ 0; yet, ε̄ and εb are unknown. In turn, when put e.g. in (28) this may lead to
vi > 0, i.e., di not being a descent direction. The point is that x̄i has been chosen as the stability center
on the basis of li, implicitly assuming it to be a reasonable approximation of the function value; yet, later
on other information inserted in in Bi reveals that in fact li � f(x̄i). A possible solution, originally due
to [66], is to exploit the fact that any BM has one (or more) proximal parameter(s), that can be almost
freely adjusted. The idea is that whenever vi > 0 the proximal parameter is adjusted so that the MP
becomes less stabilized—say, µi is reduced in the PBM—so that vi+1 < vi, hopefully becoming negative
(enough). This is called a Noise Reduction (or Noise Attenuation) step (NR), because the “noise” in the
function computation is higher than the “signal” corresponding to vi; by increasing vi (in absolute value),
the signal-to-noise ratio also increases (being the error bounded). With minimal care, a finite number of
NR leads to two possible outcomes. The first is that the solution xi of the MP becomes a solution of (3),
i.e., a global minimum of the model f i; in this case, x̄ is ε̄-optimal and the BM can stop (it actually has

to, as there is no other recourse). Otherwise, vi will eventually become “sufficiently negative”, and the
normal course of the BM can resume. This approach has been shown to work for the PBM under even
looser assumptions on the oracle, i.e., li may not even be a guaranteed lower bound on f(xi) and zi may
not even be a guaranteed ε-subgradient at xi, provided that the errors are suitably bounded [25,99]. The
PLBM has some different technicalities [24], in particular in the constrained case [93]; interestingly, the
DSBM does not require NR at all, since the level constraint always ensures that vi < 0 [26, §4].

The previous analysis assumed no control on the oracle error, but this is not the only possible case.
There have been different definitions of controllable inexact oracles [24, 25, 75, 93], but perhaps the most
complete is that of the inexact informative, cooperative oracle of [96]. This takes in input, besides x, three
parameters −∞ ≤ τ ≤ τ ≤ ∞ (the lower and upper targets, with τ > −∞ and τ < ∞), and 0 ≤ ε ≤ ∞
(the accuracy), and provides

function value information: two values f and f̄ s.t.

−∞ ≤ f ≤ f(x) ≤ f̄ ≤ ∞ , f̄ − f ≤ ε;
and at least one between f̄ ≤ τ and f ≥ τ holds

first-order information: if f > −∞, a z s.t. f(·) ≥ f + 〈z, · − x〉

(65)

It is always possible to attain (65), possibly at the cost of computing f(x) with high accuracy, but the
many parameters “allow to stop computation earlier”. In particular, if f̄ ≤ τ then it is possible to return
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f = −∞, and hence no linearization z at all. This is motivated by the Lagrangian case in which (39)
is hard, say a Mixed-Integer Linear Problem (MILP), whose solution process actually amounts at three
different parts:

1. finding a feasible solution u ∈ U (hence f and z) by appropriate heuristics;

2. producing an upper bound f̄ by the exact solution of some relaxation of (39), or a feasible solution
of an appropriate dual problem;

3. if f and f̄ are not “close enough”, performing an arbitrary amount of branching and/or cutting
and running 1. and 2. again.

The three parameters have different roles in stopping the process, and are not redundant. If ε = ∞,
the thresholds τ/τ may allow to stop after that step 2./1. above (respectively) have been ran, possibly
without even running the other one (and therefore, in the case of τ , not even producing z). If, instead,
a finite ε is given, stopping requires both bounds, but is independent from which of the two thresholds
is satisfied. It is possible to set “minimal” values for the parameters (τ and ε as large as possible, τ
as small as possible) that ensure convergence of a IxBM, thereby hopefully reducing the computational
cost of (39) as much as possible. It has to be remarked, though, that doing so may potentially impact
convergence speed, a trade-off that has not been well enough investigated in practice yet.

Oracle (65) is collaborative in that it must in principle be able to compute the function with arbitrary
accuracy, although the BM can strive to keep the requirements at a minimum. Not in all cases it is
possible, or reasonable, to do so: some oracles (problems) may only be solvable up to some specific
accuracy ε̄. Actually, there are three different ways in which this can happen. The first is that ε̄ is
explicitly known beforehand. Otherwise, the oracle may stop with ε < f̄ − f ≤ ε̄, but still produce

correct upper and lower estimate. Finally, the oracle can “cheat” by (say) reporting f̄ = f , thus formally

respecting f̄ − f ≤ ε, but doing so at the cost of returning incorrect information. It turns out [96, §4]

that each of the three cases corresponds to an entirely different NR, where µi is decreased in response to
a different condition; in all these cases, convergence of the IxBM to a ε̄-optimal solution can be proven.

5.2 Incremental approaches

Another (albeit strictly related) way in which the oracle cost can be reduced is specific to sum-functions
(cf. §4.2). There, “the oracle” is actually a set of separate oracles, one for each k ∈ K: in alterna-
tive/addition to allowing approximate computation in each of them separately, a rather drastic way of
saving computation time is to completely avoid to call some of them. Hence, at each iteration one has
(possibly, approximate) f -values and subgradients only for some subset Z ⊆ K of the components, out
of which the estimates fZ(xi) =

∑
k∈Z fk(xi) and zZ =

∑
k∈Z zk are obtained. A BM doing so is called

Incremental (IcBM) by analogy with incremental subgradient-type methods [13, 41, 65]. The latter are
in turn closely related with stochastic subgradient methods for stochastic optimization and mini-batch
approaches in Machine Learning; there, each fk is a specific realization of a stochastic process or sample
of a process to learn, again ideally drawn at random from an infinite set. Thus, for a random Z, there
can be hope that zZ be a reasonable estimate of the true (stochastic) subgradient, and hence a rationale
for using it to define the step. In fact, convergence for these methods is perhaps more naturally proven
in a probabilistic sense; deterministic results require to compute the “full” f (Z = K)—a batch iteration
in ML parlance—often enough. This kind of analysis is not well-suited for BM.

However, at least with the disaggregate model (cf. §4.2) it is easy enough to construct a IcBM by,
basically, considering it a IxBM. Indeed, for each k /∈ Z one can pretend that the model information at
xi, say f i

k
(xi) and z̄i, is the output of an approximate oracle; thus, it is possible to analyse IcBM using,

say, the very general results of [25], as done in [31]. However, the IcBM—at least, with exact individual
sub-oracles—corresponds to a controllable oracle, in that by evaluating more and more components
it is possible to arbitrarily reduce the error; hence, one would expect to be able to do without NR.
What is actually easy is declaring a NS by only evaluating a subset of all the components. In fact,
since f i

k
(xi) ≤ fk(xi), clearly ∆f i =

∑
k∈K(∆f ik = fk(xi) − f i

k
(xi)) ≥ ∆f iZ =

∑
k∈Z ∆f ik. Hence, if

∆f iZ > −mvi implies that a fortiori (37) holds, and therefore (38) does. Declaring a SS is instead trickier,
as any un-evaluated component may counterbalance the descent of all the evaluated ones with a very
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steep ascent. One possible strategy is to only perform incremental NS, while requiring a “full” iteration
(Z = K) to declare a SS, analogously to what incremental subgradients do. A different approach has
been proposed in [96], under the assumption that all the fk are Lipschitz continuous with known constant
Lk. This allows to perform incremental SS as well by using the upper model

f̂kP(x) = min
{ ∑

p∈Pk
fpk θ

p
k + Lk‖sk‖2 :

∑
p∈Pk

xpθpk + sk = x , θk ∈ Θk

}
,

where Pk is the upper bundle formed of pairs (xp , fpk = fk(xp) ). The upper bundle can be compressed
similarly to the ordinary (lower) one Bk, with its poorman’s version containing only x̄, thus making

the computation of f̂kP potentially inexpensive. With this expedient, an IcBM that need not necessarily
compute all the components neither at NS nor at SS can be defined, and its convergence analysed with
quite standard results, basically those of [19]. It is also easy to combine the two techniques by only
computing a subset of the components and do that only approximately, e.g. with oracle (65).

An even stronger version of IcBM requires that the MP is not solved, as usual, for all components
together, but component-wise, somehow more in the spirit of incremental subgradient methods; this
entails some complications [47]. Here one could, however, employ the approach of [67] discussed in §4.5,
whereby only the dual variables of the currently “active” component are allowed to vary whereas all the
others are kept fixed, so that all components but one are represented by one fixed linearization.

All in all, IcBM have already been shown to improve performances in practice [31,48], but more work
is required to characterize the many trade-offs they entail.

We finish this section with an apparently different, but in fact strongly related, way to decrease the
function computation time: exploiting the fact that the oracles fk are independent, and therefore can be
computed in parallel. This can be done in the obvious master-slave fashion, which has obvious drawbacks.
First, the MP is a sequential bottleneck, which by Amdahl’s law limits the maximum achievable speedup
[16], requiring specific efforts to decrease the MP cost (with the corresponding nontrivial trade-offs).
Furthermore, subdividing the components between different processors so that the computation takes
roughly the same time can be reasonably easy if all components are alike, but in many applications
some of them require considerably more effort than others. Thus, a truly asynchronous BM would be
required. A proposal in this sense is [33], which however is tailored to the case where |K| is large, but
each component actually depends on only a few of the variables x. A general-purpose asynchronous BM
should be possible, in particular using the results of [96], but several theoretical and practical issues still
have to be ironed out.

6 Conclusion

Bundle-type methods have now a quite long history, spanning over 40 years from [69,76,101], and almost
60 from the seminal [60]. This work shows that this time has not been wasted: motivated by the ever
increasing requirements of applications, many variants have been proposed and analysed that can provide
significant performance benefits. As a very quick summary, investigation has focussed on i) different forms
of stabilization, with different trade-offs between the cost of the corresponding MP and the theoretical
and practical convergence speed; ii) different forms of (lower, and recently also upper) models that better
exploit the properties of the function at hand; iii) solution methods for the MP that provide trade-offs
between the accuracy of the solution and the computational cost; iv) a detailed characterization of the
accuracy with which (the different components of) f has (have) to be computed in order to be able to
proceed with optimization.

Yet, several theoretical and practical issues still remain open. The understanding of efficiency of
standard BM is still rather partial, with the only available results depicting the almost hopelessly slow
method corresponding to full aggregation—basically, a subgradient-type one—and therefore completely
failing to capture facets of the practical convergence like the “fast tail”. Furthermore, almost all effi-
ciency estimate treat NS and SS as almost entirely unrelated processes, whereas intuitively the practical
efficiency of BM precisely hinges on the fact that they are not. In general, dealing with the stabilization
parameter(s) remains more of an art than a science, thereby making BM rather susceptible to breaking
down due to mismanagement of the algorithmic parameters; this limits their application potential, due
to the difficulty of providing a “black-box” implementation that can be used by an inexperienced user
without knowledge of its inner working and a significant parameter tuning phase. Besides the stabiliza-
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tion and related algorithmic parameters, this also applies to the fact that there are many variants of
BM regarding to the stabilization technique, the model and the computation of the function; finding the
right one for one’s application, and capturing the proper trade-offs between all these aspects, is a rather
complex process currently requiring specific knowledge and skills. It is therefore perhaps not surprising
that there are not many available BM software packages, and that their practical use in applications is
rather limited in comparison to more “stable” algorithmic techniques like simplex and IP methods for
linear/quadratic/conic programming. Admittedly, this also has to do with the inherent complexity of
choosing, say, the right Lagrangian relaxation of one’s problem, as opposed to just writing the model and
using standard tools, a more general issue having more to do with the currently available modelling tools
and solvers than with the specific characteristics of BM in particular.

Also, this work only deals with “standard” BM for convex problems. Significant research, often mo-
tivated by specific application like Machine Learning, has been poured into BM for nonconvex problems,
or “nonstandard” ones trying to make better use of whatever available second-order information may be
(if any). Thus, our treatment does not cover many other important facets of research in BM. Yet, we
have hopefully shown that “standard” BM for convex optimization are a vast, diverse, and interesting
class of algorithms with many relevant applications, and therefore a worthy research subject.
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[36] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization, 13(1):117–156, 2002.

[37] A. Frangioni. About lagrangian methods in integer optimization. Annals of Operations Research,
139(1):163–193, 2005.

[38] A. Frangioni and G. Gallo. A bundle type dual-ascent approach to linear multicommodity min cost
flow problems. INFORMS Journal on Computing, 11(4):370–393, 1999.

[39] A. Frangioni and B. Gendron. 0-1 reformulations of the multicommodity capacitated network design
problem. Discrete Applied Mathematics, 157(6):1229–1241, 2009.

[40] A. Frangioni and B. Gendron. A stabilized structured dantzig-wolfe decomposition method. Math-
ematical Programming, 104(1):45–76, 2013.

[41] A. Frangioni, B. Gendron, and E. Gorgone. On the computational efficiency of subgradient methods:
a case study with lagrangian bounds. Mathematical Programming Computation, 9(4):573–604, 2017.

[42] A. Frangioni, C. Gentile, and F. Lacalandra. Solving unit commitment problems with general ramp
contraints. International Journal of Electrical Power and Energy Systems, 30:316–326, 2008.

[43] A. Frangioni and E. Gorgone. Generalized bundle methods for sum-functions with “easy” compo-
nents: Applications to multicommodity network design. Mathematical Programming, 145(1):133–
161, 2014.

[44] A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the semimetric polytope.
Mathematical Programming, 104(2-3):375–388, 2005.

[45] A. Fuduli and M. Gaudioso. Tuning strategy for the proximity parameter in convex minimization.
Journal of Optimization Theory and Applications, 130(1):95–112, 2006.

[46] E. Gaar. Efficient Implementation of SDP Relaxations for the Stable Set Problem. PhD thesis,
Alpen-Adria-Universität Klagenfurt, Fakultät für Technische Wissenschaften, Klagenfurt, Austria,
2018.

[47] M. Gaudioso, G. Giallombardo, and G. Miglionico. An incremental method for solving convex finite
min-max problems. Mathematics of Operations Research, 31:173–187, 2006.

[48] M. Gaudioso, G. Giallombardo, and G. Miglionico. On solving the lagrangian dual of integer
programs via an incremental approach. Computational Optimization and Applications, 44:117–138,
2007.

[49] J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization with the
projective algorithm. Management Science, 38:284–302, 1992.
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