
Fully Incremental Bundle Methods:
(Un)cooperative (Un)faithful Oracles

and Upper Models

Antonio Frangioni1 Wim van Ackooij2

1. Dipartimento di Informatica, Università di Pisa
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Motivation: Lagrangian relaxation

Hard block-structured problem

sup
{ ∑

k∈K c
kuk :

∑
k∈K A

kuk = b , uk ∈ Uk k ∈ K
}

(1)

Lagrangian dual w.r.t. linking constraints

min
{
f (x) = xb+

∑
k∈K f

k(x) = sup
{

(ck − xAk)uk : uk ∈ Uk
}}

(2)

ν(2) ≥ ν(1), bound tight, useful for heuristic and exact approaches

Countless many applications, e.g. Uncertain Unit Commitment1,2

Many small subproblems rather than a large one, but:

to be solved many times (iterative approach to (2))

possibly each one still rather hard

possibly rather different from each other (thermal vs. hydro units . . . )

did I say they can be many already?

1
van Ackooij, Danti Lopez, F., Lacalandra, Tahanan “Large-scale Unit Commitment Under Uncertainty [. . . ]” AOR, 2018

2
Scuzziato, Finardi, F. “Comparing Spatial and Scenario Decomposition for Stochastic [. . . ]” IEEE Trans. Sust. En., 2018
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Solving the Lagrangian Dual

Sequence { xi } of iterates =⇒ solutions ui = [ uki ]k∈K

=⇒ f k(xi ) = (ck − xiA
k)uki , −xiAk = zki ∈ ∂f k(xi )

Bundles Bk = { ( zki , α
k
i = zki xi − f ki ) }, Cutting Plane models

f̌ kB (x) = max
{
zki x − αk

i : (zki , α
k
i ) ∈ Bk

}
≤ f k(x)

Master Problem x+ ∈ argmin
{
f̌B(x) = xb +

∑
k∈K f̌

k
B (x)

}
(a LP)

=⇒ Cutting-Plane Method

Several issues (MP unbounded below), especially instability:

{ xi } “swings wildly” even if xi close to the optimum

Gedankenexperiment: start from x∗, constrain ‖x − x∗‖∞ ≤ δ

δ 1e+4 1e+2 1e+0 1e−2 1e−4 1e−5 1e−6

r.it. 1.07 1.12 0.86 0.77 0.56 0.19 0.04

Would work wonders . . .

if only we knew x∗
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Stabilizing the CPM

Stability center x̄ , stabilization parameter t > 0

Stabilized MP (proximal version) x+ = argmin
{
f̌B(x) + 1

2t ‖x − x̄‖2 }
Translated function f kx̄ (d) = f k(x̄ + d)− f k(x̄) =⇒
translated model f̌ kB,x̄(d) = f̌ kB (x̄ + d)− f k(x̄) =⇒
linearization errors αk

i (x̄) = f k(x̄)− [ f k(xi ) + zki (x̄ − xi ) ]≥ 0 =⇒
f̌ kB,x̄(d) = max

{
zki d − αk

i (x̄) : i ∈ Bk
}
≤ f kx̄ (d) =⇒

zki ∈ ∂αk
i
f k(x̄) (for simplicity, αk

i (x̄)→ αk
i )

Primal and dual MP (Θ = unitary simplex):

min
{ ∑

k∈K v
k + 1

2t ‖d‖
2 : vk ≥ zki d − αk

i i ∈ Bk , k ∈ K
}

(3)

min
{ 1

2
t
∥∥∥∑
k∈K

∑
i∈Bk

zki θ
k
i

∥∥∥2
+
∑
k∈K

∑
i∈Bk

αk
i θ

k
i : θk ∈ Θk k ∈ K

}
(4)
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(Standard) Proximal Bundle Method

ν(3) = −ν(4), primal-dual relationships

z∗ =
∑

k∈K
(
zk∗ =

∑
i∈Bk z

k
i θ

k
i∗
)
, α∗ =

∑
k∈K

(
αk
∗ =

∑
i∈Bk α

k
i θ

k
i∗
)
≥ 0

d∗ = −tz∗ , v∗ = −t ‖z∗‖2 − α∗ =
∑

k∈K
(
vk∗ = d∗z

k
∗ − αk

∗
)
≤ 0

x+ = x̄ + d∗ = x̄ − tz∗ with z∗ ∈ ∂α∗f (x̄) (ε-subgradient method)

Serious Step condition: f (x+) ≤ f (x̄) +mv∗, m ∈ (0, 1) (Armijo-type)

=⇒ x̄ ← x+ (SS), otherwise x̄ unchanged (Null Step)

With just fixed t, { x̄i } → x∗
3, then dynamic t-strategies4

Disaggregate MP (3)/(4) =⇒ good convergence5 (usually)

However, solve all subproblems exactly at every iteration

Sometimes too costly, need to do better

3
Correa, Lemaréchal “Convergence of Some Algorithms for Convex Minimization” Math. Prog., 1993

4
Lemaréchal, Sagastizábal “Variable metric bundle methods: from conceptual to implementable forms” Math. Prog., 1997

5
F., Gorgone “Bundle methods for sum-functions with “easy” components [. . . ]” Math. Prog., 2014
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The Incremental Idea

Would be nice to only compute a subset Z ⊂ K of components

This is clearly possible (and easy) at NS

Effect of a NS: new information enters B =⇒ ‖z∗‖2 ↘ 0 and α∗ ↘ 0

∼ SS condition can be declared knowing only f k for k ∈ Z:

∆f Z =
∑

k∈Z
(

∆f k = f k(x+)− f̌ k(x+)
)
≥ m(−v∗) ≥ mν(4) (5)

(use f̌ k(x+) ≤ f k(x+) for k /∈ Z)

Technical lemma: (5) =⇒

ν(4)− ν(4+) ≥ ∆f Z

2
min

{
1 ,

∆f Z

t+ ‖zZ∗ − zZ‖2

}
≥ 0

Assuming
∥∥zk∥∥ bounded and ti bounded above (easy)

v∗ ≥ ε > 0 =⇒ ν(4i )↘ −∞ E =⇒ ‖z∗‖2 ↘ 0 and α∗ ↘ 0
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Incremental vs. Inexact

Can be seen as special case of inexact Bundle method

f (xi ) approximately computed with unknown (bounded) error ε:

just use f̌ k(xi )/zk∗ in place of f k(xi )/zki (lower oracle)

A whole convergence theory exists, even for non-lower oracles6

Issue: by under-estimating f (xi ), you can do a “bad SS”

Technically: αk
i ≥ 0 no longer true =⇒ v∗ > 0 can happen =⇒

SS condition no longer characterizes a descent step E

Solution I: Noise Reduction ≡ change t (increase it)

requires proper handling of NR steps

Solution II: exact oracle at SS ≡ ε = 0 ≡ Z = K
requires lots of work at every SS (in theory, only the last one)

Can we do better?
6

de Oliveira, Sagastizábal, Lemaréchal “Convex proximal bundle methods in depth: [. . . ] inexact oracles” Math. Prog., 2014
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Ingredient I: A More Detailed Oracle

Informative cooperative oracle: inputs point x , lower and upper
targets −∞ ≤ tark ≤ tark ≤ ∞, accuracy 0 ≤ εk ≤ ∞, outputs:


i) function value information: two values f k and f̄ k s.t.

−∞ ≤ f k ≤ f k(x) ≤ f̄ k ≤ ∞ and f̄ k − f k ≤ εk
ii) first-order information: if f k > −∞, a zk ∈ Rn s.t.

f k(·) ≥ f k + zk(· − x)

iii) s.t. at least one between f̄ k ≤ tark and f k ≥ tark holds

Typical application: exact approach for hard (Lagrangian) problem
heuristic −→ “good” ūk ∈ Uk =⇒ f k = ck ūk ≤ f k(x), zk = −Ak ūk

relaxation −→ “good” upper bound f̄ k ≥ f k(x)

any amount of branching and/or cutting to make f k and f̄ k “close”

Explicit upper bound (almost7) never considered before

Parameters allow to stop early; e.g., if f̄ k ≤ tark heuristic not ran at
all, no zk even produced (vice-versa if f k ≥ tark)

7
van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches, with Application [. . . ]” CO&A, 2016
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Ingredient II: Upper Model

Upper bundle Pk = { ( xi , f̄
k
i ) } =⇒ trivial upper model:

ḟ kP (x) = inf
{ ∑

i∈Pk f̄ ki θ
k
i :

∑
i∈Pk xiθ

k
i = x , θk ∈ Θk

}
≥ f (x)

Obvious issue: ḟ kP (x) =∞ for x /∈ X̄ k
P = conv( { xi : i ∈ Pk } )

Assumption: f k globally Lipschitz ≡
∥∥zk∥∥ ≤ Lk , Lk known =⇒

f̂ kP (x) = inf
{ ∑

i∈Pk f̄ ki θ
k
i + Lk‖sk‖2 :

∑
i∈Pk xiθ

k
i + sk = x , θk ∈ Θk

}
= inf{ ḟ kP (w) + Lk‖x − w‖2 }<∞

f̂ kP (x) ≥ f (x), requires solving a SOCP to be computed

Pk can be handled independently from Bk : poorman’s upper bundles

Pk
∗ =

{
( xk∗ , f̄

k
∗ ) =

( ∑
i∈Pk xiθ

k
i∗ + sk∗ ,

∑
i∈Pk f̄ ki θ

k
i∗ + Lk‖sk∗ ‖2

) }
with sk∗ , θk∗ corresponding to x̄i (=⇒ cheap)

{ f̂ kP (x̄i ) } non increasing, finite even if Zi ⊂ Ki
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Ingredient III: Worst-Case Linearization Errors

Linearization errors defined using the upper model:

αk
i (x̄ ,P) = f̂ kP (x̄)− [ f ki + zki (x̄ − xi ) ] (6)

(still αk
i for simplicity, still zki ∈ ∂αk

i
f k(x̄))

Easily updated as x̄ changes (information transport property)

αk
i (x̃ ,P) = zki ( x̄ − x̃ ) + αk

i (x̄ ,P) + ( f̂ kP (x̃)− f̂ kP (x̄) ) (≥ 0 ) (7)

Take into account the gap between upper and lower bound:

f̂ kP (x̄)− f̌ kB (x̄) = min {αk
j : j ∈ Bk } ≤ αk

i ∀i ∈ Bk (8)

Reliable upper approximation of the true αk
i , even if Zi ⊂ Ki

Different from inexact approach, which uses f̂ kP (x̄) instead of f̂ kP (x̃)

=⇒ no more “unreliable” SS =⇒ no more NR
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The Main Loop

0 ∀ k ∈ K, (f k1 , f̄
k

1 , z
k
1 )← Ok(−∞,∞, εk , x̄1); Pk

1 ← { (x̄1, f̄
k

1 ) },
Bk1 ← { (zk1 , α

k(x̄1,Pk
1 )) }; `← 1

1 solve (3)/(4) for d∗,`, v
k
∗,`, θ

k
∗,`, z

k
∗,` and αk

∗,`;

2 if ‖z∗,`‖ ≤ δ1 && α∗,` ≤ δ2 then stop

3 ∆∗,` ← t` ‖z∗,`‖2 /2 + α∗,`; x`+1 ← x̄` + d∗,`; f̌`(x`+1) = f̂`(x̄`) + v∗,`;
tar` ← f̌`(x`+1)−m2v∗,`; tar` ← f̌`(x`+1) + m1∆∗,`;
ε` ← tar` − tar`;
(B`+1,P`+1)← Inner Loop( B`, P`, x̄`, x`+1, ε`, v

k
∗,`, ∆∗,`, m1, m2);

4 if f̂`+1(x`+1) ≤ tar` then perform a SS; if f̌`+1(x`+1) ≥ tar` then

perform a NS; (if both hold, choose arbitrarily)

5 Appropriately update P`+1, B`+1, t`+1; `← `+ 1; go to 1;

Quite a few algorithmic parameters: δ1 ≥ 0, δ2 ≥ 0,
0 < m1 < m2 < 1, x̄1, t1 > 0, 0 ≤ εk <∞
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A Picture is Worth 1000 Words
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Example of SS and NS both possible
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Nontrivial Details

Convergence quite easy with standard ideas (t-management,
B-management, . . . ) and results3 except for a few subtle points

Adding (x`+1, f̄
k) to Pk

` may decrease f̂`(x̄`) =⇒ αk
i =⇒ αk

∗ =⇒ −v∗

The SS condition may not hold any more with the recomputed v∗

which is why we don’t recompute it (tar, tar fixed in Inner Loop)

“Almost fake” SS

Anyway, SS =⇒ f̂`+1(x̄`+1)� f̂`(x̄`), even if f̂`(x̄`)� f̂`+1(x̄`)

Similarly, “almost fake” NS, but αk
i =⇒ αk

∗ =⇒ ν(4) decreases

All in all, convergence holds if the Inner Loop works

Whenever the oracle is called, a sanity check is done:

f̄ k+ := min
{
f̄ k+ , f̂ kP (x+)

}
, f k+ := max

{
f k+ , f̌

k
B (x+)

}
(9)
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The Inner Loop

0 Input B, P, x̄ , x+, tar, tar, ε, vk∗ , ∆∗, m1, m2; Z ← ∅;
for each k ∈ K do Pk ← Pk ∪ { ( x+ , f̂

k
+ = f̂ kP (x+) ) };

Arbitrarily set βk ≥ 0 s.t.
∑

k∈K β
k = 1; f̌ k+ = f̂ k + vk∗ ;

tark ← f̌ k+ + m1β
k∆∗; tar

k ← f̌ k+ −m2β
kv∗;

1 Arbitrarily select k ∈ K and εk ≥βkε; (f k+, f̄
k

+ , z
k)←

Ok( min{ tark , tar− f −k+ },max{ tark , tar− f̄ −k+ } , εk , x+ );

update f k+ and f̄ k+ according to (9);

2 Pk ← Pk ∪ { ( x+ , f̂
k

+ = f̂ kP (x+) ) } replacing the previous pair;
if zk has been produced then

Z ← Z ∪ {k}; Bk ← Bk ∪ { (zk , αk
+(x̄ ,P) ) };

3 if neither f̂`+1(x`+1) ≤ tar` nor f̌`+1(x`+1) ≥ tar` then go to 1;

“−k” = K \ { k }; at first call, εk =∞
Assumption: eventually, εk = βkε =⇒ terminates

Deciding βk nontrivial, but interesting (cost, AI/ML prediction, . . . )
Frangioni, van Ackooij Fully Incremental Bundle Methods ISMP 2018 17 / 50



Aside: Partial Aggregation

Approach would seem to necessarily require disaggregation

Usually disaggregation is good (fast convergence), but

if |K| large, MP can be very costly

Partial aggregation may be in principle useful

Static partial aggregation easy to do, but inflexible

Alluring idea: one single cut for each iteration, even if Z` 6= Z`+1

Actually possible: partly aggregated cuts
∑

k∈Z vk ≥ zZi d − αZi

Need to keep the disaggregated representation zki , αk
i

Need to keep the disaggregated upper bundles Pk

For the rest it works without problems, possibly well8

8
Helmberg, Pichler “Dynamic scaling and submodel selection in bundle methods for convex optimization” OO 6180, 2017
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Accuracy

The algorithm converges to an (approximatively) δ2-optimal solution

(exactly if δ1 = 0, otherwise somewhat hard to establish)

Each oracle never asked more than δ2β
k absolute accuracy:

the relative size of f k(x∗) matters, as well as the choice of βk

If δ2 small, high accuracy is required

(albeit only towards the end of the algorithm)

This may be impossible or too costly

Thus far, “gentlemen agreement” between algorithm and oracle:

algorithm only asks as little as possible, but oracle must cooperate

What if the oracle cannot/does not want to cooperate?
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Uncooperative Oracles

Any reasonable uncooperative oracle boundedly so:

finite maximum error ε̄ <∞ =⇒ at best ε̄-optimal solution9

There are actually three different forms of uncooperative oracles

Each form corresponds to a different NR step

Only one of them was known before

All forms give similar results (approximately ε̄-optimal solution)

but with differences (a-posteriori optimality estimate)

Cheating oracles particularly tricky (2ε̄-optimal if not uniform)

Different types of uncooperative oracles can be mixed

9
d’Antonio, F. “Convergence analysis of deflected conditional approximate subgradient methods” SIOPT, 2009
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Informative boundedly uncooperative oracles

Declare a-priori the smallest achievable accuracy 0 < ε̄k <∞
≡ only works if εk = tark − tark ≥ ε̄k

Approximation algorithm with worst-case a-priori guarantee,

B&C with no limit on resources, . . .

A-priori NR:

2.1 if ε` < ε̄ then if ‖z∗,`‖2 ≤ δ1 then stop else t`+1 ←� t`;

x̄`+1 ← x̄`; B`+1 ← B`; P`+1 ← P`; `← `+ 1; go to 1;

Provided t` ↗∞ during sequences of NR + NS, converges to

(approximately) [ε′ = (ε̄ =
∑

k∈K ε̄
k)/(m2 −m1)]-optimal solution

(≈ ε̄ as m2 ≈ 1 and m1 ≈ 0)

Actually, (α∗,∞ = lim inf`→∞ α∗,` ≤ ε′)-optimal:

a-posteriori optimality measure (still approximate if δ1 > 0)
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Uninformative faithful boundedly uncooperative oracles

Only works if εk ≥ ε̄k , but ε̄k <∞ unknown

Faithful ≡ all answers are correct, possibly just not enough accuracy

A-posteriori guarantee (PTAS, B&C, . . . ) but resource limit

Inner Loop may not satisfy SS or NS condition, “emergency stop”

A-posteriori NR:

4.1 if neither SS condition nor NS condition hold then

if ‖z∗,`‖2 ≤ δ1 then stop else t`+1 ←� t`; x̄`+1 ← x̄`;

Provided t` ↗∞ during sequences of NR + NS, converges to

(approximately) max{ε′, δ2}-optimal solution

Again, α∗,∞ a-posteriori estimate of solution quality

More optimistic version: the oracle does not bound itself to obtain
accurate solutions but may still attain them =⇒
could get δ2-optimal solution even if δ2 < ε′
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Uninformative cheating boundedly uncooperative oracles

Uncooperative, unknown ε̄k <∞ and no f̄ k =⇒
has to cheat and report “fake” f̄ k

Consequence: zki ∈ ∂(αk
i +ε̄k )f

k(x̄) with unknown ε̄k

Pure heuristic ≡ standard assumption in the literature6 ≡
uniformly cheating: f̄ k = f k (apparently good for any εk)

Delayed a-posteriori NS:

1.1 if α∗,` < −m3t` ‖z∗,`‖2 (< 0) then if ‖z∗,`‖2 ≤ δ1 then stop

else t`+1 ←� t`; x̄`+1 ← x̄`; B`+1 ← B`; P`+1 ← P`; `← `+ 1;
go to 1;

looks “ex ante” like 2.1, but it is “more ex-post” than 4.1

Require specific arguments6 because αk
∗ 6≥ 0 (although αk

∗ + ε̄k ≥ 0)

As usual, t` ↗∞ during sequences of NR + NS
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If you Cheat, at Least Do So Uniformly

Uniformly cheating =⇒ no 2.1 and 4.1

Technical point: slight modification of lower targets

tar` := f̌`(x`+1)−m1v∗,`

ε` := tar` − tar` = (m2 −m1)(−v∗,`)
tark := f̌ k+ −m1β

kv∗
(a bit worse since −v∗,` > ∆∗,`)

Allows any m3 < 1; usually m3 < 1/26 =⇒ can use original

Converges to (approximately) max{ε̄, δ2}-optimal solution

Non-uniformly cheating =⇒ 2ε̄-optimal (adversary oracle)

No informative cheating oracle (f̄ k = f k + ε̄k)

All three kinds of oracles can be mixed (bit technical, not difficult10)

10
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018
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Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good, because a lot can be done

(choosing k , choosing βk , choosing εk , . . . )

We haven’t had the time to do significant tests yet

≡ on many significantly different relevant applications

Part of the issue: developing significant application is “hard”

Many things have to be recoded each time

No tools for embedding Lagrangian relaxation into B&C

. . . yet
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No tools for embedding Lagrangian relaxation into B&C

. . . yet
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Putting all this in practice

. . . easier said than done

Specialized implementations for one application “relatively easy”

General implementations for all problems with same structure harder:
it took ≈ 10 years from idea to 5 on top of existing, nicely structured
C++ bundle code

Issue: extracting structure from problems

Issue: really using this in a B&C approach

Especially hard: multiple nested forms of structure, reformulation

Current modelling/solving tools just don’t do it

So we are building our own under the auspices of plan4res

https://www.plan4res.eu/
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What We Want

A modelling language/system which:

explicitly supports the notion of block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables)

allows exploiting specialised solvers on blocks with specific structure

caters all needs of complex methods: dynamic generation of
constraints/variables, modifications in the data, reoptimization

C++ library: set of “core” classes, easily extendable

Why C++? A number of reasons:

all serious solvers are written in C/C++

we all love it (especially C++11/14)

tried with Julia/JuMP, but could not handle well C++ interface
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The Core SMS++

ObjectiveFunction

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

      abstract
representation
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Block

Block = abstract class representing the general concept of
“a part of a mathematical model with a well-understood identity”

Each Block:: a model with specific structure (e.g.,
Block::BinKnapsackBlock = a 0/1 knapsack problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., a, b, c)

Abstract representation of a Block:
one (for now) ObjectiveFunction

any # of groups of (pointers) to (static) Variable

any # of groups of std::list of (pointers) to (dynamic) Variable

any # of groups of (pointers) to (static) Constraint

any # of groups of std::list of (pointers) to (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . . ) or boost::multi array thanks to boost::any

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock can have k Block::MCFBlocks inside)
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Variable

Abstract concept, thought to be extended (a matrix, a function, . . . )

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Keeps the set of Constraint/ObjectiveFunction it influences

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

Modification::VariableModification (fix/unfix)
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Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . . )

Keeps the set of Variables it is influenced from

Either satisfied or not by the current value of the Variables

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

Modification::ConstraintModification (relax/enforce)
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ObjectiveFunction

Abstract concept, perhaps to be extended (vector-valued . . . )

Either minimized or maximized

Keeps the set of Variables it depends from

Can be evaluated w.r.t. the current value of the Variables
(but its value depends on the specific form)

ObjectiveFunction::RealObjectiveFunction implements
“value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic ObjectiveFunction)

Modification::OFModification (change verse)
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Block and Solver

Any # of Solvers attached to a Block to solve it

Solver:: for a specific Block:: can use the physical representation
=⇒ no need for explicit Constraints
=⇒ abstract representation of Block only constructed on demand

However, Variables are always present (interface with Solver)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraints can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:
Variables not belonging to the Block are constants

Constraints not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

ObjectiveFunction of sub-Blocks summed to that of father Block
if has same verse, but min/max supported
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Solver

Solver = interface between a Block and algorithms solving it

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solvers can be attached to the same Block

Solutions are written directly into the Variables of the Block

Individual Solvers can be attached to sub-Blocks of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modifications

Heavily slanted towards RealObjectiveFunction

(optimality guarantees being upper and lower bounds)

Derived CDASolver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

Something relevant may be missing, asynchronous calls not clear yet
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Block and Modification

Most Block components can change, but not all:
set of sub-Blocks

number and shape of groups of Variables/Constraints

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solvers concerned

abstract Modification, only Solvers using it concerned

Abstract Modification on Variable/Constraint must always be
issued, even if no Solver, to keep both representations in sync

A single change may trigger more than one Modification

A Solver will disregard a Modification it does not understand
(there must always be another one it understands)

A Block may refuse to support some changes (explicitly declaring it)
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Modification

Almost empty base class, then everything has its own derived ones

Each change to Block/Variable/Constraint . . . produces a
Modification, and a smart pointer is passed to the Block

The Block funnels it to the interested Solvers (above, if any)

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraints)

Each Solver has the responsibility of cleaning up its list of
Modifications (smart pointers → memory will finally be released)

Modifications processed in the arrival order to ensure consistency

Solvers are supposed to reoptimize to improve efficiency, which is
easier if you can see all list of changes at once (lazy update)

A Solver may optimize the changes (Modifications may cancel
each outer out . . . ), but its responsibility
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Solution and Configuration

Block produces one Solution, possibly using its sub-Blocks’

A Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of the primal/dual solution

Block, Solution are tree-structured complex objects

Configuration for them a (possibly) tree-structured complex object
but also Configuration::SimpleConfiguration (an int)

Configuration::BlockConfiguration sets (recursively):

which dynamic Variable/Constraints are generated, how
(Solver, time limit . . . )

which Solvers attached to each sub-Block

which Solution is produced . . .
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R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone), should always work

Available R3Blocks Block::-specific, a Configuration needed

R3Block completely independent (new Variable/Constraints),
useful for algorithmic purposes (branch, fix, solve, . . . )

Solution of R3Block useful to Solvers for original Block:
map back solution() (best effort in case of dynamic Variables)

Sometimes keeping R3Block in sync with original necessary:
map forward modifications(), task of original Block

map forward solution() and map back modifications() useful,
e.g., dynamic generation of Variable/Constraints in the R3Block

Block:: is in charge of all this, thus decides what it supports
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First Basic Implementations

Variable::ColVariable implements “value = one single real”,
possibly restricted to Z, with (possibly infinite) bounds

Modification::ColVariableModification (change bounds, type)

Constraint::RowConstraint implements “l ≤ a real ≤ u”

Has dual variable attached to it (single real)

Modification::RowConstraintModification (change l , u)

RowConstraint::FRowConstraint: “a real” given by a Function

RealObjectiveFunction::FRealObjectiveFunction:
“value” given by a Function
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Function

LagrangianFunction

{ LinearFunction }Block

Function C05Function C15Function

LinearFunction
BendersFunction

...

DSepQFunction

PolynomialFunction

...

Function only deals with (real) values

Approximate computation supported in a quite general way11

Asynchronous evaluation still not defined

Handles set of Variables upon which it depends

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variables)

11
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018
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C05Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . . )

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports Hessians, unclear how much reoptimization
possible/useful
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LagrangianFunction

C05Function::LagrangianFunction has one isolated Block

+ set of (so far) LinearFunction to define Lagrangian term

evaluate() = Block.get registered solvers()[ i ].solve():
asynchronous Solver =⇒ asynchronous Function

Solutions extracted from Block ≡ linearizations

Solver provides local pool

LagrangianFunction handles global pool

All changes lead to reoptimization-friendly Modification

BendersFunction should be quite similar
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Other useful stuff

un any thing() template functions/macros to extract
(std::vector or boost::multi array of) (std::list of)
Variable/Constraints out of a boost any and work on that

Solution::ColVariableSolution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

Solution::RowConstraintSolution uses the abstract
representation of any Block that only have (. . . ) RowConstraints to
read/write the dual solution

Of course, Solution::CVFRSolution . . .

Solver::MILPSolver solves with Cplex any Block that only has
(. . . ) ColVariables, FRowConstraints and
FRealObjectiveFunction with LinearFunctions
(uses the abstract representation)
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A Lot of Work, Then Maybe Conclusions
Fully incremental Proximal Bundle Methods possible

Should be easy to extend to Level/Doubly Stabilized12

Still a lot to learn computationally (choosing βk , . . . )

Fully asynchronous Bundle now looks doable (Frank’s talk)

Huge challenge: make these techniques mainstream

(at least, less desperately bleeding-edge)

A new hope: structured modelling system

Alpha version, not all the features you have seen are complete

Design principles have kept evolving, new ideas continue to crop up

Core nicely general, but only success in applications validate it

Overhead still largely unknown (although C++ efficient)

Asynchronous still to be figured out (but very relevant)

Not for the faint of heart, but we are trying. Someone cares to join?
12

de Oliveira and M. Solodov “A doubly stabilized bundle method for nonsmooth convex optimization” Math. Prog., 2016
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Advertisement

WANTS YOU!
If you can do one or more of:

advanced C++ programming;

HPC/parallel programming;

large-scale optimization, decomposition;

If you want to earn 30000e per year (before income taxes)

If you are willing to move to Pisa for the next two years

Then please do apply here:
https://www.unipi.it/ateneo/bandi/assegni/asse2018/inf/30lug2018/

before 30/07/2018 (selection 07/09/2018, starts 01/10/2018)

Please forward to all possible interested parties and/or contact me

Thanks!
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