
SMS++: a Structured Modelling System
with Applications to Energy Optimization

Antonio Frangioni1 Rafael Durbano Lobato2

1Dipartimento di Informatica, Università di Pisa
2Department of Applied Mathematics, State University of Campinas

PGMO DAYS 2018
November 21, 2018 – Paris

Outline

1 Meet Our Sponsors

2 The Core Elements of SMS++

3 Existing and Planned Block/Solver

4 Conclusions and (a Lot of) Future Work

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 2 / 42

PGMO

Project “Consistent Dual Signals and Optimal Primal Solutions”

(2012–2018): initial implementation of SMS++ (Ph.D. Thesis5)

Project “Advanced Modeling Tools for Decomposition Methods to

Energy Optimization Problems” (2016):

develop general Benders’ decomposition code

Superseded by Project “Multilevel Heterogeneous Distributed

Decomposition for Energy Planning with SMS++” (to start RSN):

generic multi-level decomposition (arbitrary combination of

Benders’, Lagrange and whatever)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 3 / 42

The plan4res H2020 project

The plan4res project (www.plan4res.eu):

“An end-to-end planning and operation tool, composed of a
set of optimization models based on an integrated modelling

of the pan-European Energy System”

Plus IT infrastructure, plus lots of data, plus 3 case studies

An accurate depiction of long-term effects of strategic choices
on the pan-European Energy System ≡

modelling the next 30 years with 1h timescale

and huge amounts of uncertainty over everything

An unfeasibly large optimization problem

with lots of structure

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 4 / 42

The plan4res H2020 project

The plan4res project (www.plan4res.eu):

“An end-to-end planning and operation tool, composed of a
set of optimization models based on an integrated modelling

of the pan-European Energy System”

Plus IT infrastructure, plus lots of data, plus 3 case studies

An accurate depiction of long-term effects of strategic choices
on the pan-European Energy System ≡

modelling the next 30 years with 1h timescale

and huge amounts of uncertainty over everything

An unfeasibly large optimization problem with lots of structure

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 4 / 42

Lower layer: the European Unit Commitment (UC)

Schedule a set of generating units to satisfy the demand at each
node of the transmission network at each time instant of the horizon

Two versions: simulation (only costs) and operation (also schedules)

Three natural sources of structure: unit, time, and network

Relaxing demand constraints decomposes by unit and network:

one problem per unit across all horizon, a network problem per instant

Indeed, Lagrangian Relaxation historically1 the go-to approach for
both simulation and operations2,3

1
van Ackooij, Danti Lopez, F., Lacalandra, Tahanan “Large-scale Unit Commitment Under Uncertainty [. . .]” AOR, 2018

2
Borghetti, F., Lacalandra, Nucci “Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit

Commitment”, IEEE Transactions on Power Systems, 2003
3

Dubost, Gonzalez, Lemaréchal “A primal-proximal heuristic applied to french unit-commitment problem” Math. Prog. 2005

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 5 / 42

UC Lagrangian approaches

A lot of network structure:

Dynamic Programming4 for simple single thermal units,

but not for complex ones5

Min-Cost Flows6 for simple hydro valleys, but not for complex ones7

Laplacian of graph8 for simple network constraints,

but not for complex ones9

other stuff (ROR hydro, solar/wind, small-scale storage, demand
response, smart grids, . . .) usually “easy”

Efficient algorithms for simple cases

At least some hope for complex cases (real-world operations)

4
F., Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints” Op. Res. 2006

5
Tavlaridis-Gyparakis “Decomposition Techniques for Large-Scale Energy Optimization Problems” Ph.D. Thesis, 2018

6
F., Manca “A Computational Study of Cost Reoptimization for Min Cost Flow Problems” INFORMS JOC, 2006

7
Sahraoui, Bendotti, D’Ambrosio “Real-world hydro-power unit-commitment [. . .]” Energy, 2017

8
F., Serra Capizzano “Spectral Analysis of (Sequences of) Graph Matrices” SIMAX, 2001

9
Bienstock, Chertkov, Harnett “Chance-constrained optimal power flow [. . .]” SIAM Review 2014

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 6 / 42

A Picture is Worth 1000 words

A lot of network structure spread around (≈ multicommodity flow)

Nontrivial linking constraints

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 7 / 42

Can We Deal With Such a Structure?

Of course we can, in fact with several different approaches:

Lagrangian decomposition10 and related methods11, even in parallel12

Structured Interior-Point methods13

Structured active-set (simplex) methods14

Structured Dantzig-Wolfe decomposition15,16

. . .

Unclear which is better for the application at hand, since

have to be solved many times with changing data ≡ reoptimization

10
F., Gallo “A Bundle type dual-ascent approach to linear multicommodity min cost flow problems” INFORMS JOC, 1999

11
Grigoriadis, Khachiyan “An exponential function reduction method for block angular convex programs” Networks, 1995

12
Cappanera, F. “Symmetric and asymmetric parallelization of a cost-decomposition algorithm [. . .]” INFORMS JOC, 2003

13
Castro “Solving difficult multicommodity problems through a specialized interior-point algorithm” Ann. OR, 2003

14
McBride “Progress made in solving the multicommodity flow problem” SIOPT, 1998

15
F., Gendron “A stabilized structured Dantzig-Wolfe decomposition method” Math. Prog., 2013

16
Mamer, McBride “A decomposition-based pricing procedure for large-scale linear programs [. . .]” Man. Sci., 2000

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 8 / 42

Mid Level: Seasonal storage valuation

Unit-Commitment is a short-term problem, lacks long-term strategies

Issue: cost of water (none) / minimum reservoir volume (very low)

=⇒ lot of water used early on =⇒ no water most of the year

Hydro production most useful for peak shaving every day

Computing value of water left in the reservoirs at horizon end

≡ the value function of UC w.r.t. max water constraints

(naturally convex if Lagrangian relaxation = convexification17 used)

A mid-term (1y) stochastic program: uncertain inflows, demands, . . .

Stochastic dual dynamic programming18,19

with multiple EUC inside (in principle ≈ 365)

17
Lemaréchal, Renaud “A geometric study of duality gaps, with applications” Math. Prog. 2001

18
Pereira, Pinto “Multi-stage stochastic optimization applied to energy planning” Math. Prog., 1991

19
van-Ackooij, Warin “On conditional cuts for Stochastic Dual Dynamic Programming” arXiv:1704.06205, 2017

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 9 / 42

A Picture is Worth 1000 words

Standard structure for (DP +) Benders’ decomposition

Whenever you do Benders’ you can do Lagrange20 and vice-versa21

Very many different variants, which is best/feasible??

20
Guignard, Kim “Lagrangean decomposition: a model yielding stronger lagrangean bounds” Math. Prog. 1987

21
Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicommodity Flow Problems” Man. Sci. 1977

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 10 / 42

Higher level: Investment Layer

The energy system changes all the time, but

modifications slow, extremely costly, with huge inertia

Demand and production subject to very significant uncertainties:

climate = RES production + demand, shifts in consumption patterns

(EV, cryptocurrencies, . . .), new technologies (shale, LED, . . .),

geo-political factors (energy security), economical factors

(boost or boom), regulatory factors (EU energy market, . . .),

political factors (CO2 emission treaties, nuclear power, . . .), . . .

Planning long-term evolution very hard, yet necessary

20/30 years, 2/5 years steps (multi-level recourse), many scenarios

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 11 / 42

A Picture is Worth 1000 words

Huge size, multiple nested structure

Still OK for either Benders or Lagrange

Benders + DP + Benders + Lagrange + Graph or . . . ???

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 12 / 42

How Do you Solve Such a Thing?

Modeling system: easily construct a huge, flat = unstructured matrix
to be passed to a general-purpose, flat solver

Some solvers offer one-level decomposition (Benders, CG = DW)

Attempts at automatically recovering structure from a matrix22, but
only one level and anyway conceptually awkward

Only one tool (that I know of) for multiple nested structure23,24, but
only solves continuous problems by Interior Point methods

Nothing for multilevel, heterogeneous approaches (such as, but not
only, decomposition), e.g., allowing specialized solvers for each block

So far

22
Furini, Lübbecke, Traversi et. al. “Automatic Dantzig–Wolfe reformulation of mixed integer programs” Math. Prog. 2015

23
Gondzio, Grothey “Exploiting Structure in Parallel Implementation of Interior Point Methods [. . .]” Comput. Man. Sci., 2009

24
Colombo et al. “A Structure-Conveying Modelling Language for Mathematical [. . .] Programming” Mathe. Prog. Comp., 2009

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 13 / 42

Outline

1 Meet Our Sponsors

2 The Core Elements of SMS++

3 Existing and Planned Block/Solver

4 Conclusions and (a Lot of) Future Work

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 14 / 42

What We Want

A modelling language/system which:

explicitly supports the notion of block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised solvers on blocks with specific structure

caters all needs of complex methods: dynamic generation of
constraints/variables, modifications in the data, reoptimization, . . .

C++ library: set of “core” classes, easily extendable

Why C++? A number of reasons:

all serious solvers are written in C/C++

we all love it (especially C++11/14/17/20)

tried with Julia/JuMP, but could not handle well C++ interface

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 15 / 42

The Core SMS++

Objective

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 16 / 42

Block

Block = abstract class representing the general concept of
“a part of a mathematical model with a well-understood identity”

Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., G , b, c , u)

Abstract representation of a Block:
one Objective (but possibly vector-valued)

any # of groups of (pointers) to (static) Variable

any # of groups of std::list of (pointers) to (dynamic) Variable

any # of groups of (pointers) to (static) Constraint

any # of groups of std::list of (pointers) to (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array thanks to boost::any

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock can have k Block::MCFBlock inside)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 17 / 42

Variable

Abstract concept, thought to be extended (a matrix, a function, . . .)

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Influences a set of Constraint/Objective/Function
(actually, a set of ThinVarDepInterface)

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

VariableModification:Modification (fix/unfix)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 18 / 42

Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . .)

Depends from a set of Variable (:ThinVarDepInterface)

Either satisfied or not by the current value of the Variable,

checking it possibly costly (:ThinComputeInterface)

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

ConstraintModification:Modification (relax/enforce)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 19 / 42

Objective

Abstract concept, does not specify its return value (vector, set, . . .)

Either minimized or maximized

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

RealObjective:Objective implements “value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic Objective)

ObjectiveModification:Modification (change verse)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 20 / 42

Function

Function C05Function C15Function

Function only deals with (real) values

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

Approximate computation supported in a quite general way25

(since :ThinComputeInterface, and that does)

Asynchronous evaluation still not defined

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variable)

25
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 21 / 42

C05Function and C15Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . .)

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports Hessians, unclear how much reoptimization
possible/useful

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 22 / 42

ThinVarDepInterface

Generic concept of “something depending on a set of Variable”

Specific implementation demanded to derived classes for efficiency

“Abstract” STL-like iterator and const-iterator for access

Other specific methods to describe/search the set

Specific twist: a :ThinVarDepInterface is constructed after and
destructed before “its” Variable, clear() method to avoid
un-necessary data structure updating during destruction

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 23 / 42

ThinComputeInterface

Generic concept of “something that can take time to evaluate”

Specific provisions for the fact that the computation can:

end in several ways (OK, error, stopped, . . .) and be resumedx

be influenced by int/double/std::string parameters which can be
gathered in a ComputeConfig:Configuration object (flexible)

Defaults so that “simple” objects with no parameter do nothing

Clear rules about effect of changes in the underlying object during
and after compute() to allow for “reoptimization”

Changes may be “explicit” (a Modification issued) or “implicit”
(changing a Variable value do not trigger a Modification)

Asynchronous compute() not done yet, TBD soon with CrayTM help:
changes in this interface will do the trick everywhere

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 24 / 42

Block and Solver

Any # of Solver attached to a Block to solve it

:Solver for a specific :Block can use the physical representation
=⇒ no need for explicit Constraint
=⇒ abstract representation of Block only constructed on demand

However, Variable are always present (interface with Solver)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraint can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:

Variable not belonging to the Block are constants

Constraint not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

Objective of sub-Blocks summed to that of father Block if has
same verse, otherwise min/max

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 25 / 42

Solver

Solver = interface between a Block and algorithms solving it

Solver:ThinComputeInterface, inherits and extends interface

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solver can be attached to the same Block

Solutions are written directly into the Variable of the Block

Individual Solver can be attached to sub-Block of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modification

Somehow slanted towards RealObjective (optimality guarantees =
upper and lower bounds)

CDASolver:Solver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 26 / 42

Block and Modification

Most Block components can change, but not all:
set of sub-Block

and shape of groups of Variable/Constraint

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

Abstract Modification used to keep both representations in sync
=⇒ a single change may trigger more than one Modification

=⇒ concerns Block() mechanism to avoid this to repeat
=⇒ parameter in changing methods to avoid useless Modification

Specialized Solver disregard abstract Modification and vice-versa

A Block may refuse to support some changes (explicitly declaring it)

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 27 / 42

Modification

Almost empty base class, then everything has its own derived ones

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraint)

Each Solver has the responsibility of cleaning up its list of
Modification (smart pointers → memory eventually released)

Solver supposedly reoptimize to improve efficiency, which is easier if
you can see all list of changes at once (lazy update)

GroupModification to (recursively) pack many Modification

together =⇒ different “channels” in Block

Modification processed in the arrival order to ensure consistency

A Solver may optimize the changes (Modifications may cancel
each outer out . . .), but its responsibility

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 28 / 42

Solution

Block produces Solution object, possibly using its sub-Blocks’

Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of primal/dual information

Linear combination of Solution supported =⇒ “less general”

Solution may (automatically) convert in “more general” ones

Like Block, Solution are tree-structured complex objects

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 29 / 42

Configuration

Block a tree-structured complex object =⇒
Configuration for them a (possibly) tree-structured complex object

But also SimpleConfiguration<T>:Configuration

(T an int, a double, a std::pair<>, . . .)

BlockConfiguration:Configuration sets (recursively):

which dynamic Variable/Constraint are generated, how
(Solver, time limit, parameters . . .)

which Solution is produced (what is saved)

a bunch of other Block parameters

BlockSolverConfiguration:Configuration sets (recursively)
which Solver are attached to the Block and their
ComputeConfiguration:Configuration

Both can be set (recursively) at once

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 30 / 42

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone) should always work

Available R3Blocks :Block-specific, a :Configuration needed

R3Block completely independent (new Variable/Constraint),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

map forward solution() and map back Modification() useful,
e.g., dynamic generation of Variable/Constraint in the R3Block

:Block is in charge of all this, thus decides what it supports

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 31 / 42

Other useful stuff

un any thing() template functions/macros to extract
(std::vector or boost::multi array of) (std::list of)
Variable/Constraint out of a boost any and work on that

All tree-structured complex objects (Block, Configuration,
Solution) have an (almost) completely automatic factory

All tree-structured complex objects (. . .) have methods to
serialize/deserialize themselves to netCDF files

All objects have “>>” std::stream operator,
some (Block) also have “<<”

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 32 / 42

Closer to the ground

ColVariable:Variable: “value = one single real” (possibly ∈ Z)

RowConstraint:Constraint: “l ≤ a real ≤ u” =⇒
has dual variable (single real) attached to it

OneVarConstraint:RowConstraint: “a real” =

a single ColVariable ≡ bound constraints

FRowConstraint:RowConstraint: “a real” given by a Function

FRealObjective:RealObjective: “value” given by a Function

LinearFunction:Function: a linear form in ColVariable

ColVariableSolution:Solution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

FakeSolver:Solver: just stashes away all Modification

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 33 / 42

Outline

1 Meet Our Sponsors

2 The Core Elements of SMS++

3 Existing and Planned Block/Solver

4 Conclusions and (a Lot of) Future Work

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 34 / 42

S*MILPBlock and MILPSolver

SimpleMILPBlock:Block: an un-structured set of FRowConstraint
and one FRealObjective with only LinearFunction on an
un-structured set of ColVariable, possibly with attached
OneVarConstraint but no sub-Block

StructuredMILPBlock:SimpleMILPBlock: all sub-Block can be
SimpleMILPBlock (hence also StructuredMILPBlock), generic
linking constraints are defined among the variables of the father
Block and of the sub-Block

TBD MILPSolver:Solver: passes to Cplex any Block that only has any
of groups of ColVariable and FRowConstraint, and a
FRealObjective, all with LinearFunction only

TBD MILPSolver to be transformed in “generic” MILP solver interface
with a sub-class for SCIP

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 35 / 42

MCFBlock and MCFSolver

MCFBlock:Block: a Min-Cost Flow Problem

MCFSolver:Solver: solves a MCFBlock forwarding the MCFClass

interface (www.di.unipi.it/optimize/Software/MCF.html)

and its existing solvers (<MCFClass>)

First complete implementation of a Block/Solver pair, with almost
all mechanisms (physical/abstract Modification, R3Block, . . .)
save for dynamic stuff and sub-Block

Everything seems to fit, but testing still underway

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 36 / 42

LagrangianFunction [TBD]

LagrangianFunction:C05Function has one isolated Block

+ set of (say) LinearFunction to define Lagrangian term

evaluate() = Block.get registered solvers()[i].solve():

asynchronous Solver =⇒ asynchronous Function

Solution extracted from Block ≡ linearization

Solver provides local pool

LagrangianFunction handles global pool

All changes lead to reoptimization-friendly C05FModification

BendersFunction should be quite similar

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 37 / 42

UCBlock and Companion Classes [TBD]

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 38 / 42

UCLagrangianBlock [TBD]

NDOSolver

Bundle Subgradient ...

Block2
Block1 ...

UCBlock

UCLagrangianBlock

FiOracle

get_R3_Block()

OF
LagrangianFunction

Block

map_back_solution()

piece of demand constraints
...

AcadThermalUnitBlock 1UCDPSolver

Independent from details of units/network

Multi-level decomposition now (perhaps) possible

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 39 / 42

Outline

1 Meet Our Sponsors

2 The Core Elements of SMS++

3 Existing and Planned Block/Solver

4 Conclusions and (a Lot of) Future Work

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 40 / 42

A Lot of Work, Then Maybe Conclusions

Current pre-beta version sitting tight on GitLab

gitlab.com/frangio68/sms plus plus project

Private repository, but any interested onlooker/contributor just ask

Two quite good, (2+1)-years, 215 e/ year, post-doc positions open

https://www.unipi.it/ateneo/bandi/assegni/asse2018/inf/28nov2018

Deadline 28/11, thanks for helping disseminate

About time, too, because a lot of work still ahead of us

True large-scale application still to come, Solver to be written

Asynchronous still to be figured out (but very relevant),
good CrayTM folks will lend a helping hand here

Clearly not for the faint of heart . . .

but when it’ll work it will be useful in many applications

We are trying. Anyone cares to join?

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 41 / 42

A Lot of Work, Then Maybe Conclusions

Current pre-beta version sitting tight on GitLab

gitlab.com/frangio68/sms plus plus project

Private repository, but any interested onlooker/contributor just ask

Two quite good, (2+1)-years, 215 e/ year, post-doc positions open

https://www.unipi.it/ateneo/bandi/assegni/asse2018/inf/28nov2018

Deadline 28/11, thanks for helping disseminate

About time, too, because a lot of work still ahead of us

True large-scale application still to come, Solver to be written

Asynchronous still to be figured out (but very relevant),
good CrayTM folks will lend a helping hand here

Clearly not for the faint of heart . . .
but when it’ll work it will be useful in many applications

We are trying. Anyone cares to join?

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 41 / 42

Acknowledgements

Copyright c© PLAN4RES Partners 2018, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the PLAN4RES Consortium. In

addition, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for

any use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

A. Frangioni, R. Lobato (DI — UniPi) SMS++ & Energy PGMO DAYS 2018 42 / 42

	Meet Our Sponsors
	The Core Elements of SMS++
	Existing and Planned Block/Solver
	Conclusions and (a Lot of) Future Work

