Deliverable D2.1
Definition and requirements of three case studies

Summary

<table>
<thead>
<tr>
<th>Deliverable No.</th>
<th>D2.1</th>
<th>Work Package No.</th>
<th>WP2</th>
<th>Task/s No.</th>
<th>Task 2.1/2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Package Title</td>
<td>Case Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked Task/s Title</td>
<td>TASK 2.1. DETAILED DEFINITION OF THE CASE STUDIES TASK2.2 IDENTIFY THE REQUIREMENTS FOR THE MODELLING FRAMEWORK AND NECESSARY DATA FRAMEWORK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Draft Final</td>
<td>(Draft/Draft Final/Final)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissemination level</td>
<td>PU</td>
<td>(PU-Public, CO-Confidential)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due date deliverable</td>
<td>2018-10-31</td>
<td>Submission date</td>
<td>planned 30.11.2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable version</td>
<td>Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D2.1 Report with the definition and requirement of three case studies

Deliverable Contributors:

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Organisation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliverable Leader</td>
<td>D. Most</td>
<td>Siemens</td>
<td>19-Dec 2018</td>
</tr>
<tr>
<td>Work Package Leader</td>
<td>D. Most</td>
<td>Siemens</td>
<td>19-Dec 2018</td>
</tr>
<tr>
<td>Contributing Author(s)</td>
<td>D. Daniel</td>
<td>EDF (LEAD CS3)</td>
<td>28-Nov 2018</td>
</tr>
<tr>
<td></td>
<td>S. Charousset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Pudjianto</td>
<td>Imperial (Lead CS2)</td>
<td>28-Nov 2018</td>
</tr>
<tr>
<td></td>
<td>S. Giannelos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Beulertz</td>
<td>RWTH</td>
<td>28-Nov 2018</td>
</tr>
<tr>
<td></td>
<td>D. Most</td>
<td>Siemens (Lead CS1)</td>
<td>28-Nov 2018</td>
</tr>
<tr>
<td></td>
<td>I. Yueksel-Erguen</td>
<td>ZIB</td>
<td>18-Dec 2018</td>
</tr>
<tr>
<td>Reviewer(s)</td>
<td>D. Beulertz</td>
<td>RWTH</td>
<td>20-Dec 2018</td>
</tr>
<tr>
<td></td>
<td>M. dell Amico</td>
<td>ICOOR</td>
<td>21-Dec 2018</td>
</tr>
<tr>
<td>Final review and approval</td>
<td>Sandrine Charousset</td>
<td>EDF</td>
<td>21-Dec 2018</td>
</tr>
</tbody>
</table>

History of Changes

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Reason for Change</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19-Dec 2018</td>
<td>Implementation of feedback from reviewers</td>
<td>Final</td>
</tr>
</tbody>
</table>
DISCLAIMER / ACKNOWLEDGMENT

Copyright © PLAN4RES Partners 2018, all rights reserved. This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the PLAN4RES Consortium. In addition, an acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this deliverable only reflects the author’s views. The European Commission / Innovation and Networks Executive Agency is not responsible for any use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773897
Table of Content

History of Changes .. 2
Table of Content .. 4
List of Tables .. 5
List of Figures .. 5
List of acronyms used in this document ... 7
Glossary of terms used in this document .. 8
Executive Summary .. 9
1 Introduction ... 11
2 Common Story / Scenario .. 14
 2.1 Baseline Story ... 14
 2.2 Common Topics ... 15
3 Definition Case Study 1 ... 45
 3.1 Overall Objective ... 45
 3.1 Baseline of the Study ... 46
 3.2 Target User ... 47
 3.3 Focus / Challenge (Beyond-state-of-the-art) ... 47
 3.4 Detailed Description ... 50
4 Definition Case Study 2 ... 66
 4.1 Overall Objective ... 66
 4.2 Baseline of the study ... 66
 4.3 Target User ... 67
 4.4 Focus / Challenge (Beyond-state-of-the-art) ... 67
 4.5 Detailed Description ... 68
5 Definition Case Study 3 ... 73
5.1 Overall Objective .. 73
5.2 Baseline of the study .. 73
5.3 Target User .. 74
5.4 Focus / Challenge (Beyond-state-of-the-art) ... 74
5.5 Detailed Description .. 76

6 Additional input for case studies from external stakeholders .. 85
7 References .. 86

List of Tables

Table 2.1 Annual GDP and population growth as assumed in plan4res and from studies (sources [2] [3] [4] [9]) .. 18
Table 2.2 Projected fossil fuel prices as recommend for plan4res and other studies (sources [3] [4] [7] [9]) .. 19
Table 2.3 Projected ETS prices respectively CO2 emission allowance prices and historical annual averaged prices from ETS trading at the EEX (sources [2] [3] [4] [7] [9]) .. 43

List of Figures

Figure 2.1 Final energy consumed in the EU28 countries for heating and cooling purposes (source [10]) .. 20
Figure 2.2 Final energy consumed by the sector for heating and cooling purposes in 2015 (source [10]) .. 20
Figure 2.3 eHighway concept for heavy duty transport over long distances (source: [17]) (Left) and the light eTruck ‘StreetScooter’ for local freight transport (source [18]) (Right) 25
D2.1 Report with the definition and requirement of three case studies

Figure 2.4 Spatial intensity of wind (source: [21]) and solar power sources in (source: Solargis) Europe...

Figure 2.5 Representation of the pan-European electric transmission grid (source [9])...

Figure 2.6 Clustered representation of the pan-European transmission grid in 2030 (Left) and recommended grid reinforcement for 2050 from e-Highway2050 scenario Large-scale RES (source [9]) (Right)... 31

Figure 2.7 Map of hydro power plants and hydro reservoirs across Europe [47]...

Figure 2.8 Pan-European energy mix as projected by e-Highway 2050 – Large-scale RES scenario [9]...

Figure 2.9 Existing pan-European electricity generation mix (source ENTSO-e 2015 [29])...

Figure 2.10 Exemplary projections for the pan-European electricity generation mix in 2050 by e-Highway2050 [9] (Left) and projected generation mix of all sectors from to 2050 by EU Ref 2016 [4] (Right)... 34

Figure 2.11 Historical average annual prices from ETS trading at the EEX...

Figure 2.12 Projected CO2 emission allowance prices for plan4res and by different sources [2] [3] [4] [7] [9]...

Figure 3.1 Carbon emission of Europe (2015) by sector of origin (Left) and by final energy consumed (MIDDLE). Potential levers to reduce CO2 emissions in sectors beyond electricity (Right)...

Figure 3.2 Step-wise modelling approach used in case study 1...

Figure 3.3 List of technologies used in the Multimodal Investment Model (case study 1)...

Figure 3.4 Schematic of the multi-modal multi-regional investment model (MIM)...

Figure 4.1 Representation of the Pan-European electricity transmission system in network form...

Figure 5.1 Countries and sub-country clusters (colours) modelled in case study 3...

Figure 5.2 Total electricity system costs according to the rate of RES...

Figure 5.3 Impact of climate change on generation and demand (source [32])...

Figure 6.1 Participants on the Workshop with the external stakeholders on April 11, 2018 in Paris...
List of acronyms used in this document

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance (e.g. of heat pumps)</td>
</tr>
<tr>
<td>CTS</td>
<td>Commercial, Trade Service (sector)</td>
</tr>
<tr>
<td>CS</td>
<td>Case Study</td>
</tr>
<tr>
<td>CWE</td>
<td>Central Western Europe</td>
</tr>
<tr>
<td>EEX</td>
<td>European Energy Exchange</td>
</tr>
<tr>
<td>eH2050</td>
<td>e-Highway2050 European project (data source)</td>
</tr>
<tr>
<td>ENTSO-E</td>
<td>Coordination and cooperation of the TSOs (Electric Transmission Grid)</td>
</tr>
<tr>
<td>ENTSO-G</td>
<td>Coordination and cooperation of the national gas transmission system operators (TSOs) across Europe (Gas Transport Network)</td>
</tr>
<tr>
<td>ETS</td>
<td>The EU emissions trading system</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>MIM</td>
<td>Multimodal Investment Model (used in plan4res case study 1)</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Source</td>
</tr>
<tr>
<td>TYNDP</td>
<td>Ten-Year Network Development Plan</td>
</tr>
<tr>
<td>WP</td>
<td>Work Package</td>
</tr>
</tbody>
</table>
Glossary of terms used in this document

- ‘useful energy’ and ‘final energy’

The term ‘useful energy’ describes the energy type originally required to provide the technology-neutral benefit of a concrete task to be done, e.g. the amount of thermal energy for heating a room, mechanical energy for moving a car, or electricity for powering a lightning bulb etc. ‘Useful energy’ must be seen in contrast to the term ‘final energy’ which usually describes the amount of primary and/or secondary energy consumed for powering the unit or conversion process which provides the useful energy. Losses during energy conversion (or transport) will be considered in terms of efficiency causing differences between ‘final energy’ input, amount and type of energy needed for powering the conversion process, and the output of ‘useful energy’, amount and type of energy that is really required by the task to be performed.
Executive Summary

Key Words: Case Studies

In this deliverable the definition and requirement of three case studies to be performed within the plan4res project are given.

Case study 1:
Multi-modal European energy concept for achieving COP 21 goals with perfect foresight, considering sector coupling of electricity, heat and transport demand

Case study 2:
Strategic development of pan-European network w/o perfect foresight and considering long-term uncertainties

Case study 3:
Cost of RES integration and impact of climate change for the European Electricity System in a future world with high shares of renewable energy sources

- Objective of plan4res

The general objective of plan4res is to fill the gaps between the increasing complexity of the future energy system planning and operational problems and the currently available system analysis tools. Enhanced end-to-end planning and operational tools dealing with technological and market uncertainty, emerging technologies and increased sector coupling of multi-energy vectors such as heat, cold and transport will be assembled in a synergistic approach to support European system planners, operators, decision makers, regulators.

- Objective of the case studies

The modular nature of the tools allows them to be tailored to the specific needs of different entities and can adapt to the wished (or data imposed) granularity. This should be highlighted
by a set of exemplary case studies. Each of these case studies focuses on a different viewpoint on the energy system and the methods and tools necessary to solve their use cases, questions and challenges.

Three case studies (CS) with European scope will be performed to show the adequacy and relevance of the developed tools and modelling framework and its interoperability.

This comprises case study specific scenarios, highlighting their individual viewpoints on the energy system. This includes case study specific model-exogenous data, geographical scope, technology assumptions and tool functionality. Additionally, matching topics and assumptions will be assembled in a common story line, including a set of corresponding joint data.

A ‘joint’ scenario following this common story line will be analysed with the model approaches described in each case study. This should enable check of interoperability of the tools (results of one case study as input to another one) and enable comparison of the model approach.

- **Objective of this document**

In this document we will describe:

- The main common assumptions for the 3 case studies
- Specific assumptions for each case study
- Data used and data sources for each CS
- Questions that each CS aims at answering to
- Methodology for answering the questions, including a description of the tools and models that will be used, and a description of the various simulations that will be conducted
- Expected results from 3 case studies
7 References

D2.1 Report with the definition and requirement of three case studies

[23] EU, „SETIS - Technology information Sheet - Hydropower“.

Umwelt Bundesamt (Germany), „Erarbeitung einer fachlichen Strategie zur Energieversorgung des Verkehrs bis zum Jahr 2050 - Endbericht,“ Umweltbundesamt (Germany) - http://www.umweltbundesamt.de/publikationen, Dessau-Roßlau, 2016.

