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Executive Summary

The goal of plandres is to develop a modelling framework that allows to obtain a holistic assessment of the energy system.
Several (possibly, nested) stages of the framework posses different forms of structure. It is very common that some of these are
“orthogonal”, as in the case of a “horizontal” structure regarding spatial partitioning of decisions (e.g., those corresponding to a
certain unit and/or geographical area) and the “vertical” one regarding temporal partitioning of decisions (e.g., those corresponding
to a certain hour or day). This structure lends itself well to decomposition-based primal heuristics, that have already been used
successfully in energy optimization such as deterministic [1, 11, 12, 13] and stochastic [19] Unit Commitment problems.

However, previous incarnations of these approaches have been highly problem-specific. This starts from the fact that already
decomposition, even using the NDOSolver / FiOracle software framework, required a substantial amount of coding. Even
more so when constructing the heuristic itself, which requires (or at least highly benefits from) using specialized approaches for
solving the subproblems corresponding to each “time instant”.

The unique modelling capabilities of the SMS++ framework make it possible to implement a more general version of the
decomposition-based primal heuristic that is largely (albeit not completely) independent from the fine details of the model to be
solved, while retaining the ability to use specialized solvers for subproblems, both in the ‘horizontal” and in the “vertical” structure.
This will be crucial for implementing the “The EUC simulation mode” foreseen in the project [16, §1.1.3].

The aim of this document is to describe the basic algorithmic ideas of the decomposition-based primal heuristic and how specific
capabilities of the SMS++ framework allow it to be implemented in a flexible and general, yet efficient, way. Complete documen-
tation of the “master” branches of the SMS++ framework at this time is included in order to provide complete references to the
specific software components recalled in the presentation.

All the material described in this report is available at the “umbrella” repository
https://gitlab.com/smspp/smspp-project
which relies on the individual repositories

https://gitlab.com/smspp/smspp
https://gitlab.com/smspp/milpsolver
https://gitlab.com/smspp/ucblock
https://gitlab.com/smspp/mcfblock
https://gitlab.com/smspp/smilpblock
https://gitlab.com/egorgone/bundlesolver
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://github.com/frangio68/Min-Cost-Flow-Class

The documentation is also available online at

https://smspp.gitlab.io/smspp/

Key Words: Heuristics, Time-indexed MIP
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Chapter 1

Introduction

Many problems in large-scale optimization, and in particular several related to the energy system, have several (possibly, nested)
form of structure. Due to their large size and intrinsic difficulty, exploiting all these structures is crucial for efficiently approaching
them. However, this is also difficult in that the structures can be “orthogonal”. That is, if a structure-exploiting approach like a
decomposition method is used which exploits one of them, typically the same approach is not capable of tackling the other. This
is a severe limitation for general-purpose solvers. Indeed, while supporting some form of decomposition (Lagrangian relaxation
a.k.a. column generation, Benders’ decomposition) has recently become more common, general-purpose solvers focus on at most
one structure at a time, thereby necessarily neglecting the other(s).

The unique modelling capabilities of SMS++ allow to design general and flexible, yet efficient, heuristic schemes capable of
exploiting multiple forms of structure at once.

To discuss the main algorithmic ideas of such a scheme we refer to the following idealised representation of the target model:

min 3 e p > yer Cit(Wie, Tit) (1.1)
(wit, zit) € Xt 1€l , teT (1.2)
(Wit—1, Tit—1, Wit, Tit) € Hyg 1€l , teT (1.3)
Y icr V(uie, wig) = vy teT (1.4)
Uy € 21 iel , teT (1.5)

Such model has two distinct forms of structure. We distinguish an “horizontal” structure, denoted by the index set I, which
typically regards some spatial partitioning of decisions (e.g., those corresponding to a certain unit and/or geographical area i),
and a “vertical” one, denoted by the index set T', which typically regards some temporal partitioning of decisions (e.g., those
corresponding to a certain hour or day t). Note that, assuming the first time instant in 7" is denoted by ¢ = 1, constraints (1.3)
make reference to fixed values (u;o, Z0); these represent the state of the system at the beginning of the time horizon, and typically
constrain its behaviour in the initial time step(s). Furthermore, we single out the further structure corresponding to the fact that
while some variables represent continuous decisions (z;;), other represent discrete/logical ones (u;;).

This structure is found in many energy optimization contexts such as deterministic [1, 11, 12, 13] and stochastic [19] Unit Com-
mitment (UC) problems. There, T is a set of time instants in a (usually, short-term) horizon (say, hours in a day or week), while
I is a set of geographically dispersed generating units. Each unit has some continuous output (amount of power and possibly
reserve that it generates) which is subject to complex constraints, requiring logical conditions to be checked. For instance, if a unit
starts producing at some time instant, it typically has to keep on producing for a given number of subsequent time instants (min
up-time constraints, and similarly for down-time). Also, the power produced by a unit (when on) cannot change too much from a
time instant to the next one (ramp-up and ramp-down constraints). In this application, the fixed values (u;g, ;o) represent the
commitment (on/off) status and output power of the units prior to the beginning of the time horizon, which are necessary to ensure
that min up- and down-time constraints and ramp-up/ramp-down ones are satisfied in the initial time instant(s). To keep with this
motivation, which is very relevant for the plan4res project, we will generally refer to I as the set of “units”.
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The shape of the model is characterized by the fact that decisions pertaining to an unit at some point in time ¢ have a relatively
short “direct” effect on decisions for the same unit at a different instant ¢’; we represent this in the simplified form (1.3) where
only consecutive time instants directly interacts, although more general cases may have to be considered (however, note that the
definition of T is totally flexible, meaning that ¢ could actually represent a set of consecutive time instants). On the other hand, the
“global” constraints (1.4) link decisions for all units corresponding to the same time instant; while they provide the spatial coupling,
they are typically not temporally coupled. In the UC case they correspond e.g. to satisfaction of global energy/reserve demand,
possibly mediated by the transmission network.

The horizontal structure lends itself well to decomposition approaches, in particular Lagrangian ones; in fact, these have a very
long history of applications in UC in particular (cf. [20] and the many references therein). The vertical structure rather lends itself
to decomposition approaches of the (nested) Bender’s type, which not coincidentally also have been applied many times to UC
(cf. again [20]). However, combining the two approaches in a general way is far from obvious. This is partly due to the inherent
complexity of the resulting algorithm, but even more so an effect of implementation challenges. Indeed, these models are large-
scale and complex; it is already nontrivial to implement them in a “monolithic” fashion and solve them with general-purpose tools,
even more so to devise decomposition approaches. While current state-of-the-art general-purpose solvers like Cplex and SCIP
do offer some automatic decomposition capabilities that can be exploited, these are limited to one structure at the time. To the
best of our knowledge, no current system meaningfully supports exploiting two structures simultaneously.

In the following we will first present a general algorithmic scheme for a decomposition-based primal heuristic suited for (1.1)—(1.5),
borrowing and extending ideas from [1, 11, 19], and then discuss which components of SMS++ make it possible to implement a
generic yet efficient form of such a scheme.

1.1 A generic decomposition-based primal heuristic

The first ingredient of the decomposition-based primal heuristic is the ability of efficiently solving “tight” relaxations of (1.1)—(1.5),
which provide both lower bounds and useful primal solutions. This is obtained by relaxing (1.4) in a Lagrangian fashion with
multipliers )\, yielding the Lagrangian Dual

max {ZteT Ave 4+ Y min {37, o it (i, Tir) + AV (uie, ) © (1.2) , (1.8) , (1.5)} } (1.6)

The advantage of (1.6) over the ordinary continuous relaxation of (1.1)—(1.5)—that is, relaxing (1.5)—lies in the fact that it provides
a (possibly, much) stronger bound: in fact, it is well-known that, if the objective ¢;;(+) is linear, the bound is equivalent to that of

min 37 cr > er Cit(Uit, Tit) (1.1)
(uie, x0) € conv((1.2) , (1.3) , (1.5)) iel (1.7)
Zie[ V(wit, Tit) = vy teT (1.4)

i.e., the “convexified relaxation” corresponding to taking the convex hull of the subproblems and intersecting them with the relaxed
constraints [7]. For the nonlinear case, a similar result holds where the objective is the close-convexification of ¢;:(-) over the
feasible region [15]. Of course, whether the potential bound advantage actually translates into a computational advantage for
the solution of the original (1.1)—(1.5) depends both on how significant the advantage is (which is problem-dependent), and on
the computational effort required to solve (1.6) as opposed to the ordinary continuous relaxation. Two ingredients are crucial for
solving (1.6) efficiently:

1. the capability of efficiently solving the independent subproblems for each i € I, which are in principle combinatorial ones
(possibly with some exceptions, as discussed later on) and therefore may require specialized algorithms (cf. e.g. [10] for the
Unit Commitment);

2. the capability of efficiently finding the optimal dual solution A\* only provided with an “oracle” solving the subproblem(s) at
designated iterates A for this task bundle-type methods [6, 8] are the approach of choice for their numerous advantages
over subgradient-type methods [4, 9], among which:
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(a) the capability of exploiting the structure of specific subproblems that are “easy” [14] (just small Linear Programs), which
happens n plan4res models and has been shown to be very useful in the UC context [19];

(b) the capability of only approximately solve the subproblems [21, 22], which is crucial in particular for nested approaches
whereby the subproblems themselves are solved by decomposition.

The SMS++ structure, and the components developed so far, are ideal for providing both ingredients, as discussed below. How-
ever, for the purpose of decomposition-based primal heuristics, a further advantage of bundle-type methods have to be commented
upon: the capability of producing two different types of primal solutions along the iterations. In particular, for each fixed \’, one
typically has available for each i € I:

1. asolution (a! , z¢) = ([l ]ier, [7% ter ) satisfying (1.2), (1.3) and (1.5) (hence, in particular !, € Z™:t) but not (1.4);

2. a “convexified” solution (@¢, &¢) = ([, |ter , [E%]ter ), computed as a convex combination of the previously obtained
(T/ , 5:5) for ¢ < ¢; this is typically not integer (i.e., (1.5) is not satisfied), but it often “almost” satisfies (1.4)—in the sense
that it does at least at termination, at least within the set tolerances, and that the violation of the constraint is much less that
what the typical (a‘, 7¢) = [(a?, z¥ ) ]ics entails.

1 i

This behaviour is well-known, and in general it does not depend on the details of the algorithm used to solve (1.6); indeed, it
depends on the theoretical coincidence between (1.6) and (1.1),(1.7),(1.4), with (@‘, &) = [(@¢, &%) ;s typically converging
to the optimal solution of the latter as £ — oo [7]. However, the actual numerical properties of (1?/,:5@) (say, how quickly it
becomes feasible) do vary significantly with the choice of the algorithm. In particular, bundle-type methods occupy a convenient
middle-ground between subgradient methods—where (af, ig) becomes feasible only exceedingly slowly—and pure cutting-plane
ones—where (f/,ﬂ) is always feasible, but at the cost of much-lesser-quality (1‘/, ie) for most iterations. Hence, they have
repeatedly proven to be a convenient starting point for the implementation of Lagrangian heuristics which, using both (f/, :Ze) and
(f/, :Ee), strive to produce solutions that satisfy both (1.5) and (1.4). These have shown good success for “simple” deterministic UC
[1, 11,12, 13], and can be extended to more complex stochastic versions of the problem [19]. Interestingly, these heuristics share
many traits with the feasibility pump methods, that have been shown to be wildly successful for both linear and nonlinear (possibly
nonconvex) mixed-integer optimization (cf. [3] and the references therein). It should also be remarked that the computation of
(f/,icz) entails little extra cost w.r.t. that required anyway for the solution of (1.6); there could be a more significant memory
cost due to the need of storing a large number of (ﬂé, ;Ee) solutions, but this can be countered in a number of ways, including
aggregation [7, 8].

All this suggests that a general algorithmic scheme along these lines could be quite useful for the solution of the many practical
problems that share the structure (1.1)—(1.5). A possible form of the general scheme is now described.

The strategy is based on the idea of exploiting the time structure of the problem: in other words, instead of solving one multi-
period problem at once, many smaller subproblems, each for one or more periods of time (one subproblem represents one or
more periods) are solved in sequence. The subproblems are solved from the initial time period to the end, using the solution of the
previous subproblem as input to the current one, in a sliding window fashion. While the idea is reasonably simple, some qualifying
aspects of the implementation are:

» Each subproblem, corresponding to one consecutive interval of time instants, is actually characterized by three “windows”:

1. the “main window” (in blue in Figure 1.1) is the part that has both the x and the u variables free, and where the u are
actually constrained to be integer-valued; it is the part of the time horizon for which the subproblem actually takes the
integer decisions (u);

2. the “backward window” (dashed red in Figure 1.1, if any)) is a set of time instants preceding the main window, where
the u variables are fixed but the x ones are still free; this allows some recourse for decisions taken at an earlier stage
(if any) that may have proven themselves inappropriate in the light of new information corresponding to the subsequent
time periods, but recourse is limited to the “easy” continuous decisions, leaving the “hard” combinatorial part of the
decisions untouched;
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Subproblem_1 © o |0 o o o
Subproblem_2 i © o |0 o |0 o
Subproblem_3 © o o o |0 o

Figure 1.1 Main, backward and forward windows

3. the “forward window” (in green in Figure 1.1, if any)) is a set of time instants following the main window, where both
the = and the u variables are free, but the u variables are not constrained to be integer-valued; this provides the main
window with some forward insight on the future consequences of the decisions, but with in a relaxed form that does
not increase too much the cost of the subproblems.

Clearly, the idea is to solve the subproblems in increasing ordering of time, so that each subproblem takes the “hard”
decisions about the interval of time instants it governs (those of the main window), with some possible recourse on some of
the previous ones but taking into account, at least partly, the impact on decisions of subsequent subproblems.

In addition, the objective function of each subproblem is modified with the introduction of a (nontrivial) proximal term,
that could be quadratic or linear (depending on the chosen norm). The proximal term tries to reduce the distance to the
available solutions (the convexified one (ﬂe, if) and the integer unfeasible one (ﬂf, :z‘:f)), which hopefully introduces some
“global” information to guide the “local” choice of the variables for the current period. Indeed, the main issue of this kind of
approaches has been shown to be that individual periods tend to take “selfish” decisions that may reveal themselves highly
counter-productive “in the long run”; while the introduction of the backward and forward windows tries to account for this,
unless the windows cover all (or a large part) of the remaining horizon the “lack of perspective” may still be significant. With
the proximal term, the objective has the general form

min > " eir (i, i) + a [B (Vi — Tiell + (1= ) wie — Baell) + (1= B) (llwie — Zaell + (1 — ) [Jae — ae])]
tesS el

where S C T is the set of time instants covered by the specific subproblem. In plain words, the parameter a governs the
strength of the proximal term w.r.t. that of the original objective, the parameter 8 € [0, 1] governs the relative strength of
proximity with the (integer unfeasible) solution (Z, @) w.r.t. proximity with the (continuous almost feasible) solution (&, @),
while the parameter v € [0, 1] governs the relative strength of proximity to the continuous part (x) w.r.t. proximity to the
integer one (u). Some weighting may be added to account for the different “units of measure” of the different parts (for
instance, variables x may have vastly different numerical values from variables u), and some further minor generalization
of the approach may be possible; however, the above already depicts a quite general algorithmic scheme whose numerous
parameter can be tailored to adapt to a vast range of trade-offs.

Indeed, the actual behaviour of the approach will strongly depends on the setting of its many parameters, among which:

1.
2.

3.

the number of subproblems in which the horizon T is divided, and therefore the size of the main window;
the size (possibly 0) of the backward and forward windows;

the choice of the norms in the proximal term, which may impact on the type of problem (for instance, if ¢;;(-) is already
nonlinear then a 2-norm is likely appropriate but if the objective function is linear then probably the 1-norm or co-norm are
more appropriate in order not to lose the property);

the choice of the parameters in the proximal term, which again may impact on the type of problem (for instance, v = 0
means that the norm only have to be taken of binary vectors, and this allows using specific modelling tricks that may
favourably impact its structure [2, 22]).
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Thus, a flexible framework should allow to find the right trade-off between subproblem cost and quality of the obtained solution
for each specific application. The typical trade-off working well in applications is that where the heuristic is inexpensive, so that it
can be ran frequently during the solution process of (1.6), thereby benefiting from the diversification naturally provided by the fact
that (Z, @) tend to be quite different at each iteration (while (Z, @) tend to converge towards one point, which on the other hand
provides a useful source of intensification).

However, a further degree of flexibility is provided by the possibility of augmenting the scheme with a backward feedback loop.
This has shown to be useful in some application [19] where, despite all the parameter tuning, it was still difficult to obtain feasible
solutions out of the process since the “greedy” nature of the approach made it very likely that the scarce resources to be carefully
distributed across the horizon (in the application, water of hydro reservoirs) were consumed to early, leaving not enough resource
at the final stages that therefore ended up too often infeasible. To remedy this, the general idea is to add to the subproblem
a function that better represents the cost-to-go for the decision made therein, to complement the information provided by the
proximal terms (when this shows not to be enough). This naturally leads to a scheme very akin to nested Benders’ decomposition,
which—by the way—is already the cornerstone of the management of the Seasonal Storage Valuation in plan4res.

The issue is of course that Benders’ approach requires continuous subproblems (for one needs to apply duality), whereas in
general the subproblems will be mixed-integer ones. Hence, in general one can’t expect Benders’ approach to provide an optimal
solution in our setting; yet, this is not likely to be a major issue since the approach is heuristic from the start. Therefore, potentially
useful cuts can be obtained in different ways, among which:

1. by standard duality arguments when solving the continuous relaxation of the subproblem, say if it is already empty (feasibility
cut);

2. by exploiting in the subproblem the same “horizontal” structure upon which (1.6) is based, which induces a convexification
and therefore allows to produce Benders’ cuts out of a stronger formulation than the simple continuous relaxation;

3. if the subproblem turns out to be empty at integrality (but not when the continuous relaxation is solved), by employing
no-good cuts [2] (also known as combinatorial Benders’ cuts).

A number of variants of such an approach can be devised, differing in other crucial details like when cuts are generated (only when
the last subproblem is solved, or possibly at every subproblem) and how backtracking to previous subproblems is managed (cuts
are added backward all the way up to the first subproblem, in a full-forward/full-backward fashion, or backtracking is interrupted
earlier in order to avoid re-solving many subproblems). Again, while the focus of Lagrangian heuristics has traditionally been
on fast approaches repeated many times (and therefore not too complex), the generality of the scheme allows to explore a vast
landscape of trade-offs, hopefully providing means for finding variants well-suited for each different application, among which these
specific of plandres.

However, the generality of the approach also implies that efficient implementation is also absolutely non-trivial. In the next section
we discuss which components of SMS++ provided in this Deliverable allow for this to happen.

1.2 SMS++ components involved in the decomposition-based heuristic

The following SMS++ components in particular, described in details in the following Chapters of this Deliverable, are crucial for the
efficient, effective and flexible implementation of the general decomposition-based heuristic framework described above:

» The base Block class, the cornerstone of the whole SMS++ system, is perfectly suited for representing the concept of a
problem with the structure of (1.1)—(1.5) and operate on it independently on the details of the sub-B1ock representing the
individual “units”. In particular, the optimal arrangement for the decomposition-based heuristic is that of a B1ock having
the natural structure required for (1.6), i.e., in which each sub-Block represent one “unit”’, but where the sub-Block
themselves have the explicit temporal structure, i.e., they are further divided in sub-B1 ock corresponding one to each time
instant.
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* In particular, the LagBFunct ion component allows to generally represent the Lagrangian function of a generic Block
(which is the sub-Block of LagBFunction, itself both a CO5Function and a Block), completely irrespectively of
the Block itself and only provided that its Objective is a FRealObjective with a LinearFunction inside.
This means that any specialized, structure-exploiting Solver can be attached to the B1ock for efficiently computing the
Lagrangian function—a fundamental step in the solution of the Lagrangian Dual—without the LagBFunct ion needing to
know anything of the details of the B1ock and of the solution process, thanks to the completely general Solver interface.

» For the case where the required structure is not naturally there—say, only the “horizontal” one is apparent, but not the
“vertical one”—it is possible to exploit unique capability of SMS++, i.e., is its support for explicit reformulation of a Block
under the form of an R3 Block. This functionality is in particular supported by the (virtual) methods

Block::get_R3_Block ()
Block: :map_back_solution ()
Block: :map_forward_solution ()
Block: :map_back_Modification ()
Block::map_forward_Modification ()

as described in this document. This allows to construct an R3 Block that represent the “vertical structure” of the orig-
inal Block, and even attach specialized Solver to its sub-Block if available. However, it has to be remarked that
specific support is required by the B1ock for this, under the form of the capability of producing an R3 Block with the
required structure. Yet, since the construction of R3 Block is controlled by a general Configuration object, the
decomposition-based heuristic can still be kept completely general and independent on the details of the original B1ock
and its R3 Block, only provided that the right Configuration is provided at runtime.

+ Since in several cases the subproblems corresponding to either the “horizontal” or “vertical” structure will not have a structure
specific enough to admit specialized Solver, general-purpose Solver are provided by SMS++ that can tackle large
classes of optimization problems. In particular, MILPSolver provides a general interface for solvers of problems with
all linear constraints and objective, be them continuous or mixed-integer; the specific derived class CplexMILPSolver
implements the interface via calls to the state-of-the-art commercial solver Cplex, and a SCIPMILPSolver is under
development by ZIB to allow using the open-source SCIP solver [17] instead. Also, MCFBlock provides a full-featured
interface for Min-Cost Flow problems (notoriously, at the interface between continuous and combinatorial optimization), and
the corresponding MCF Solver provides access to several efficient open-source implementations of solution algorithms for
Min-Cost Flow problems.

« Another crucial algorithmic requirement is the efficient solution of NonDifferentiable Optimization problems such as typically
is (1.6). For this BundleSolver, the SMS++-native implementation of the algorithms available in the NDOSolver
/ FiOracle project [18]. As foreseen by the project, BundleSolver exploits some existing software modules
from the NDOSolver / FiOracle project, in particular the MPSolver generic interface for solvers of the Master
Problem in bundle-type algorithms and its two implementations QPPenaltyMP (using a specialized QP solver [5]) and
OSIMPSolver, rather relying on a OSISolverInterface. BundleSolver provides state-of-the-art capabilities
that are crucial for the efficient solution of (1.6), among which sophisticated management of the inexact computation of the
function [21] and support for “easy” components [14], that have been shown to be invaluable in energy applications [19].
Remarkably, the “easy components” feature of BundleSolver relies on LagBFunction for specifying the interface
and on MILPSolver for the construction of the coefficient matrices, underlying the modularity of the project.

+ Crucially, BundleSolver is not specific for Lagrangian functions, but can solve B1ock sporting any (sum of) c(s, and
a single LinearFunction). While LagBFunction is a CO5Function, another highly relevant specimen of the
class is BendersBFunction, which provides the same functionalities of LagBFunction for the other main form of
decomposition (dual to the Lagrangian one), that of Benders. Again, this allows to compute the value function of any general
Block subject to the right-hand-side of an arbitrary set of its Constraint to be a linear function of an arbitrary set of
Variables without any assumption on the nature of the Block, and allowing the use of specialized Solver where
available (and of general-purpose ones where not). The very same advanced capabilities of BundleSolver that are
crucial for the efficient solution of (1.6) can then be exploited for tackling nested Benders’ decomposition approaches like
the ones envisioned in the advanced implementations of the decomposition-based heuristic.

» Another general structure, somewhat minor but still relevant, that is necessary in particular for the implementation of
nested Benders’ decomposition approaches is that of PolyhedralFunction, a simple convex (or concave) function
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defined by the pointwise maximum (or minimum) of a “small” set of linear forms. Such a structure has two different
representations that are useful to different Solver; one as a NDO function (hence, a CO5Function), and the other
as an explicit linear program. Automatic handling of these two different representation, so that—for instance—the same
PolyhedralFunction can be optimized upon natively by eithera BundleSolver oraMILPSolver, is provided by
PolyhedralFunctionBlock. Besides being crucial in the implementation of the Stochastic Dual Dynamic Program-
ming approach foreseen for the Seasonal Storage Valuation in plan4res, such component is also useful for the Benders’
decomposition part of advanced implementations of the decomposition-based heuristic

 Finally, since the main application of the decomposition-based heuristic within plan4res is the European Unit Commit-
ment, “basic” Block representing the problem must be available. These are provided in this Deliverable. In partic-
ular, UCBlock represents the main EUC problem, with abstract classes UnitBlock and NetworkBlock defin-
ing the interface between the two main structures in the problem: units (“horizontal structure”, coupled over time but
geographically decomposable) and transmission network (“vertical structure”, geographically coupled but decomposable
over time). In turn, several classes derived from UnitBlock are defined to cater the different units required by
plandres, among which chiefly ThermalUnitBlock with a specialized DPSolver [10] and HydroUnitBlock,
but also BatteryUnitBlock, HeatBlock and IntermittentUnitBlock. Also, BusNetworkBlock and
DCNetworkBlock are defined for representing the different types of transmission network. Finally, UCBlock also con-
tains a single PolyhedralFunctionBlock to represent the future-value-of-water function for hydro reservoirs, which
is the crucial interface between the EUC (short-term) and the SSV (mid-term) levels of plan4res.

To summarise, the components provided by this Deliverable allow the efficient implementation of general and flexible
decomposition-based heuristic approaches.
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