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The Electrical System

Electrical system: the most complex machine mankind has developed

Several sources of complexity:

1 electricity is difficult to store =⇒
must be mostly produced exactly when needed

2 electricity is difficult to route, goes where Kirchoff’s laws say

3 growing renewables production is highly uncertain

4 almost everything is (more or less highly) nonlinear

All manner of (nasty) optimization problems, spanning from

multi decades to sub-second

Unit Commitment is one of the basic steps
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The Unit Commitment problem

Schedule a set of generating units over a time horizon T (hours/15m
in day/week) to satisfy the (forecasted) demand dt at each t ∈ T

Gazzillions eee / $$$, enormous amount of research1,2

Different types of production units, different constraints:

Thermal (comprised nuclear): min/max production, min up/down
time, ramp rates on production increase/decrease, start-up cost
depending on previous downtime, others (modulation, . . . )

Hydro (valleys): min/max production, min/max reservoir volume, time
delay to get to the downstream reservoir, others (pumping, . . . )

Non programmable (ROR hydro) intermittent units (solar/wind, . . . )

Fancy things (small-scale storage, demand response, smart grids, . . . )

Plus the interconnection network (AC/DC, transmission/distribution)
and reliability (primary/secondary reserve, n − 1 units, . . . )

1
van Ackooij, Danti Lopez, F., Lacalandra, Tahanan “Large-scale Unit Commitment Under Uncertainty [. . . ]” AOR, 2018

2
The plan4res project: https://www.plan4res.eu/
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Algorithmic approaches

Many different pieces, many different forms of structure

Very well-suited for decomposition methods3

Especially in the uncertain case4

Actually making this work in practice far from obvious

One would need a structured modelling system

. . . but this is another story

Suffices to say, focussing on each relevant structure makes sense

Our structure today: thermal units

There are many others (hydro units5, . . . )

3
Borghetti, F., Lacalandra, Nucci “Lagrangian [. . . ] for Hydrothermal Unit Commitment”, IEEE Trans. Power Sys., 2003

4
Scuzziato, Finardi, F. “Comparing Spatial and Scenario Decomposition for Stochastic [. . . ]” IEEE Trans. Sust. En., 2018

5
van Ackooij et. al. “Shortest path problem variants for the hydro unit commitment problem” Elec. Notes Disc. Math., 2018
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MIP Formulations of thermal units

Standard formulations in natural variables ui
t ∈ {0, 1} and pi

t ∈ R+:
on/off state and power level of thermal unit i ∈ P at time t ∈ T

Standard constraints: maximum and minimum power output

p̄i
minu

i
t ≤ pi

t ≤ p̄i
maxu

i
t t ∈ T (1)

Ramp-up/down constraints (∆i
+/∆i

− = ramp-up/down limit,
l̄i/ūi = start-up/shut-down limit)

pi
t ≤ pi

t−1 + ui
t−1∆i

+ + (1− ui
t−1)l̄ i t ∈ T (2)

pi
t−1 ≤ pi

t + ui
t∆i
− + (1− ui

t)ūi t ∈ T (3)

Min up/down-time constraints (τ i
+/τ

i
− = min up/down-time)

ui
t ≤ 1− ui

r−1 + ui
r t ∈ T , r ∈ [t − τ i

+, t − 1] (4)

ui
t ≥ 1− ui

r−1 − ui
r t ∈ T , r ∈ [t − τ i

−, t − 1] (5)
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MIP Formulations of thermal units (finish.d)

Objective function:

min
∑

i∈P

(
s i (ui ) +

∑
t∈T

(
ai

t(pi
t)2 + bi

tp
i
t + c i

tu
i
t

))
(6)

convex nonlinear energy cost (ai
t > 0)

time-dependent start-up costs s i (ui ): require some extra constraints
and continuous variables6

Global constraints: at least demand satisfaction∑
i∈P pi

t = d̄t t ∈ T (7)

plus possibly several others (reserve, pollution, . . . )

Already a nasty MIQP, unsolvable for few 10s of units (as-is)

And this is the “academic” version, real-world ones are much worse

Especially since it needs be solved “unreasonably fast”

6
Nowak, Römisch “Stochastic Lagrangian Relaxation Applied to Power Scheduling [. . . ]”, Annals O.R., 2000
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Improved MIP formulations (1)

Convex hull of the min-up/down constraints (4)/(5) known7:

exponential number of constraints, but separable in poly time

Indeed, extended formulation8: start-up/shut-down v i
t /w i

t variables

ui
t − ui

t−1 = v i
t − w i

t t ∈ T (8)

Can be extended to start-up/shut-down limits9 (τ+ ≥ 2 6= τ+ = 1)

p1 ≤ p̄maxut − (p̄max − ū)wt+1

pt ≤ p̄maxut − (p̄max − l̄)vt − (p̄max − ū)wt+1 t ∈ [2, |T | − 1]

pT ≤ p̄maxut − (p̄max − l̄)vt

7
Lee, Leung, Margot, “Min-up/Min-down polytopes”, Disc. Opt., 2004

8
Rajan, Takriti, “Minimum Up/Down polytopes of the unit commitment problem with start-up costs”, IBM RC23628, 2005

9
Gentile, Morales-Espana, Ramos “A Tight MILP [. . . ] Start-up and Shut-down Constraints”, EURO J. Comput. Opt., 2017
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Improved MIP formulations (2)

Ramp-up and Ramp-down polytopes studied separately10

Ramp-up, convex hull for two-period case

pminut ≤ pt ≤ pmaxut

0 ≤ vt+1 ≤ ut+1

ut+1 − ut ≤ vt+1 ≤ 1− ut

pminut+1 ≤ pt+1 ≤ pmaxut+1 − (pmax − l̄)vt+1

pt+1 − pt ≤ (pmin + ∆+)ut+1 + (l̄ − pmin −∆+)vt+1 − pminut

Some valid/facet defining inequalities for the general case

Strengthened ramp-up/down constraints under some conditions11

10
Damci-Kurty et al. “A Polyhedral Study of Ramping in Unit Commitment”, Math. Prog., 2016

11
Ostrowski, Anjos, Vannelli “Tight [. . . ] formulations for the unit commitment problem” IEEE TPWRS, 2012
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Improved MIP formulations (3)

Convex quadratic objective function with semi-continuous variables:

Perspective Reformulations12,13
∑

t∈T ai
t(pi

t)2/ui
t + bi

tp
i
t + c i

tu
i
t

Several ways to deal with the “more nonlinearity”14,15

Start-up cost is a concave in previous shut-down period length τ :

cs(τ) = V (1− e−λτ ) + F (only required for integer τ)

Convex hull description of the start-up cost fragment: extended
formulation with temperature variables16

All these works deal with partial fragments of the (thermal)
(single-)Unit Commitment problem

12
F., Gentile, “Perspective cuts for a class of convex 0-1 mixed integer programs”, Math. Prog., 2006

13
F., Gentile, Lacalandra, “Tighter approximated MILP formulations for Unit Commitment Problems” , IEEE TPWRS, 2009

14
F., Gentile “A Computational Comparison of [. . . ]: SOCP vs. Cutting Planes” ORL 2009

15
F., Furini, Gentile “Approximated Perspective Relaxations: a Project&Lift Approach” COAP 2016

16
Silbernagl, Huber, Brandenberg “[. . . ] MIP Unit Commitment by Modeling Power Plant Temperatures”, IEEE TPWRS, 2016
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From the DP algorithm ...

An improved DP algorithm17 based on the state-space graph G :

nodes (t, ↑)/(t, ↓): unit starts up/shuts down at time t

arc ( (h, ↑) , (k , ↓) ) with k − h + 1 ≥ τ+: unit on from h to k
(endpoints included)

arc ( (h, ↓) , (k, ↑) ) with k − k − 2 ≥ τ−: unit off from h + 1 to k − 1

An s-d path from represents a schedule for the unit

s

1 ↑

4 ↓

8 ↑

14 ↓

18 ↑

21 ↓

d

“on” arcs ( (h, ↑) , (k , ↓) ): optimal dispatching cost z∗hk +
∑k

t=h c
i
t

“off” arcs ( (h, ↓) , (k, ↑) ): start-up cost for k − h− 2 off time periods

17
F., Gentile “Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints”Op. Res., 2006
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“on” arcs cost = Economic Dispatch

Optimal dispatch cost z∗hk : solving the Economic Dispatch problem
(EDhk ) on ph, ph+1, . . . , pk

z∗hk = min
∑k

t=h f
t(pt) (9)

pmin ≤ ph ≤ l̄ (10)

pmin ≤ pt ≤ pmax h + 1 ≤ t ≤ k − 1 (11)

pmin ≤ pk ≤ ū (12)

pt+1 − pt ≤ ∆+ t = h, . . . , k − 1 (13)

pt − pt+1 ≤ ∆− t = h, . . . , k − 1 (14)

Complexity:

acyclic graph O(n) nodes, O(n2) arcs =⇒ O(n2) for optimal path

O(n3) for computing costs (specialized inner DP for (EDhk ))

=⇒ O(n3) overall
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... to a new MIP formulation

arc variables yhk
on on arc ( (h, ↑) , (k , ↓) ), yhk

off on arc ( (h, ↓) , (k , ↑) )

network matrix E for G , rhs vector b for s-d path

Ey = b (15)

power variables phk
t for t = h, . . . , k for each “on” arc ( (h, ↑) , (k , ↓) )

p̄miny
hk
on ≤ phk

h ≤ l̄ yhk
on

p̄miny
hk
on ≤ phk

t ≤ p̄maxy
hk
on t = h + 1, . . . , k − 1

p̄miny
hk
on ≤ phk

k ≤ ūyhk
on

phk
t+1 − phk

t ≤ yhk
on ∆+ t = h, . . . , k − 1

phk
t − phk

t+1 ≤ yhk
on ∆− t = h, . . . , k − 1


∀ (h, k) (16)

(15)–(16) describes the convex hull if objective linear18

Slightly 6= version (independently obtained) use DP to separate cuts19

18
F., Gentile “New MIP Formulations for the Single-Unit Commitment Problems with Ramping Constraints”, IASI RR, 2015

19
Knueven, Ostrowski, Wang, “Generating Cuts from the Ramping Polytope for the Unit Commitment [. . . ]”, OO 5099, 2015
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About the new formulation

O(n2) binary + O(n3) continuous variables, O(n3) constraints

Computational usefulness dubious (but perfect for Structured DW20)

Convex hull proof use well-known polyhedral result

Known for linear problems, but no reason to really require linearity

In fact, “easy” to generalise to MI-SOCPs21

Useful because Perspective Reformulation is SOCP-representable:

v ≥ ap2/u ≡ uv ≥ ap2 (if u ≥ 0) ≡ rotated SOCP constraint

And Perspective Reformulation describes the convex envelope

General result: appropriate composition of convex hulls gives the
convex hull

20
F., Gendron “A stabilized structured Dantzig-Wolfe decomposition method” Math. Prog., 2013

21
Bacci, F., Gentile Tavlaridis-Gyparakis “New MI-SOCP Formulations for the Single-Unit Commitment [. . . ]”, IASI RR, 2019
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The result: preliminaries

Nonlinear version of “Approach no. 4”22 known since Edmonds23

Uses duality, hence in the nonlinear case has to be Lagrangian

(was conic duality in the SOCP case)

Closed convex C =
{
z ∈ Rn : f (z) ≤ 0

}
and its mixed-integer

restriction S =
{
z ∈ C : zk ∈ Z k ∈ K ⊆ { 1 , . . . , n }

}
Arbitrary objective function c ∈ Rn, support function of c :

σC (c) = inf { cz : z ∈ C }

Arbitrary objective function c ∈ Rn, dual function of C :

σC (c) ≥ D(c) = supλ≥0

{
L(λ; c) = inf { cz + λf (z) }

}
22

Wolsey, “Integer Programming”, 1998
23

Edmonds, “Matroids and the greedy algorithm”, Math. Prog., 1971
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The result: preliminaries (2)

Basic convex analysis: the support function does not distinguish a set
from its convex hull =⇒ if the condition

∀ c ∈ Rn σS (c) = inf { cz : z ∈ S } = D(c) (17)

holds, then C = conv(S)

Dual convex hull proof: ∀ c exhibit λ∗ s.t. L(λ∗; c) = σS (c)

Depends on the description f of C

Assumption

For each (closed convex) set C represented by constraint functions
f = [ fi ]i=1,...,m : Rn → Rm, each fi ∈ C 1 and conditions hold such that
the KKT conditions are both necessary and sufficient for global optimality

Standard constraints qualification for f convex, but need not be24

24
Lasserre, “On representations of the feasible set in convex optimization”, Opt. Letters, 2010
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The result: composition operation

Two sets Sh ⊂ Rnh × R for h = 1, 2

1-sum composition:

S1 ⊕ S2 = { (x1, x2, y) ∈ Rn1+n2+1 : (xh, y) ∈ Sh h = 1, 2 }

“S1 and S2 only share the single variable y”

1-sum composition preserves both convexity and closedness

The result: under mild assumptions, the 1-sum composition of convex
hulls is the convex hull of the 1-sum composition
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The result: statement

Lemma

For h = 1, 2, let Sh ⊂ Rnh × R. If:

i) the closed (convex) sets

Ch =
{

(xh, y) ∈ Rnh+1 : y ≥ 0 , f h(xh, y) ≤ 0
}

(18)

describe the convex hull of Sh

ii) Assumption 1 holds

iii) (xh, y) ∈ Sh implies that y ∈ {0, 1}
iv) ∃ points (x̄h, 0) ∈ Sh and (x̃h, 1) ∈ Sh, for h = 1, 2,

then C 1 ⊕ C 2 = conv(S1 ⊕ S2)
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The result: sketch of proof (1)

Arbitrarily choose (c1, c2, d) ∈ Rn1+n2+1

Define L = min{ c1x1 + c2x2 + dy : (xh, y) ∈ Sh h = 1, 2 } and

L ≥ Π = inf{ c1x1 + c2x2 + dy : (xh, y) ∈ Ch h = 1, 2 }

Define the Lagrangian Dual of the latter

∆ = sup
λ0≥0 , λ1≥0 , λ2≥0

{ L(λ0, λ1, λ2) } ,

where L(λ0, λ1, λ2) =

inf
x1 , x2 , y≥0

{ c1x1 + c2x2 + (d − λ0)y + λ1f 1(x1, y) + λ2f 2(x2, y) }

Prove that L = ∆
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The result: sketch of proof (2)

By the assumptions the optimal solutions satisfies

c1 + λ1Jx f
1(x1, y) = 0 (19a)

c2 + λ2Jx f
2(x2, y) = 0 (19b)

d − λ0 + λ1Jy f
1(x1, y) + λ2Jy f

2(x2, y) = 0 (19c)

λ0y = 0 (19d)

λ1f 1(x1, y) = 0 (19e)

λ2f 2(x2, y) = 0 (19f)

For h = 1, 2 and fixed y ∈ { 0 , 1 } define

Lh
y = min{ chxh + dy : (xh, y) ∈ Ch } .
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The result: sketch of proof (3)

For h = 1, 2 define the problems (equivalent since Ch = conv(Sh))

σh = min{ chxh + (d + Lh
0 − Lh

1)y : (xh, y) ∈ Sh } (20)

σ̄h = min{ chxh + (d + Lh
0 − Lh

1)y : (xh, y) ∈ Ch } (21)

Crucial property: σ̄h = σh = Lh
0 =⇒ both y = 0 and y = 1 is optimal

Have dual solutions that satisfy KKT

ch + λhJx f
h(xh, y) = 0 (22a)

d + Lh
0 − Lh

1 − λ0 + λhJy f
h(xh, y) = 0 (22b)

λ0y = 0 (22c)

λhf h(xh, y) = 0 (22d)

for both y = 0 and y = 1
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The result: sketch of proof (4)

Now, “easy” case: L = L0 ≤ L1, i.e., y = 0 is optimal

Can construct solution of (19) using these of (22) for y = 0

“Complicated” case: L = L1 < L0, i.e., y = 1 is optimal

Further auxiliary problem

σ = min{ (L−L0)y : (x1, y) ∈ S1 } = min{ (L−L0)y : (x1, y) ∈ C 1 }
where every (x1, 1) ∈ C 1 is optimal, with KKT

λ̃1Jx f
1(x̃1, 1) = 0 (23a)

L− L0 + λ̃1Jy f
1(x̃1, 1) = 0 (23b)

λ̃hf h(x̃h, 1) = 0 (23c)

Can construct solution of (19) using these of (22) for y = 1 and (23)

The last step requires fi ∈ C 1, which is used nowhere else (!?!)
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Consequence: star-shaped MINLP

Star-shaped MINLP: constructed by a set of 1-sum compositions

If each piece has the convex hull property, so does the MINLP

Our formulation is of this kind:

network flow has the integrality property

for generic convex f , the Perspective Reformulation

zhk ≥
∑

t∈T (h,k) y
hk f (phk

t /yhk )

describes the convex hull (all phk
t depend on the same yhk )

Likely to have several other applications (Simge’s talk yesterday)
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More practical formulations (1)

Idea 1: kill the many phk
t entirely

Obvious map between 3-bin variables and flow ones

xit =
∑

(h,k):t∈T (h,k) y
hk
i , vit =

∑
k≥t y

tk
i , wit+1 =

∑
h≤t y

ht
i

Strengthen 3-bin formulation using the flow variables:

pit − pit−1 ≤ −li
∑

h:h≤t−1

yht−1
i + ∆+

i

∑
(h,k):t−1∈T (h,k−1)

yhk
i + l̄i

∑
k:k≥t

y tk
i

pit−1 − pit ≤ −li
∑

k:k≥t

y tk
i + ∆−i

∑
(h,k):t−1∈T (h,k−1)

yhk
i + ūi

∑
h:h≤t−1

yht−1
i

li
∑

(h,k):t∈T (h,k)

yhk
i ≤ pit ≤ ui

∑
(h,k):t∈T (h,k)

yhk
i

pit ≤ l̄i
∑

k:k≥t

y tk
i + ūi

∑
h:h≤t

yht
i +

∑
(h,k):h<t<k

ψhk
it yhk

i

(some changes needed when τ+
i = 1 and at the beginning of time)
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More practical formulations (2)

Idea 2: aggregate the many phk
t somehow

pit =
∑

h:h≤t p
h
it

(only starting time, not ending one)

Modified formulation

ph
it − ph

it−1 ≤ −liy
ht−1
i + ∆+

i

∑
k:k≥t y

hk
i

ph
it−1 − ph

it ≤ ūiy
ht−1
i + ∆−i

∑
k:k≥t y

hk
i

p0
i1 ≤ (∆+ + p0)

∑
k:1≤k y

0k
i

− p0
i1 ≤ (∆− − p0)

∑
k:1≤k y

0k
i

li
∑

k:k≥t y
hk
i ≤ ph

it ≤ ui
∑

k:k≥t y
hk
i

ph
ih ≤ l̄i

∑
k:k>h y

hk
i + min{l̄i , ūi}yhh

i

ph
it ≤ ūiy

ht
i +

∑
k:k>t ψ

hk
it yhk

i
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Computational results: root note bound

3-bin DP pt ph
t

n time gap time gap time gap time gap

10 0.12 1.52 16.40 0.67 0.59 0.93 2.83 0.92
20 0.28 1.43 59.07 0.51 1.46 0.78 8.53 0.76
50 0.96 0.87 300.53 0.08 4.32 0.30 22.42 0.29

Artificial (but allegedly realistic) instances

Obvious trade-off between root bound and LP cost

Picture significantly murkier after Cplex cuts added
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Computational results: overall B&C

3-bin DP pt ph
t

n time opt nodes gap time opt nodes gap time opt nodes gap time opt nodes gap

10 28 5 275 0.01 832 5 599 0.01 5 5 41 0.01 152 5 591 0.01
20 7036 2 3561 0.08 7902 2 1961 0.05 1066 5 1234 0.01 6694 3 3996 0.02
50 10000 0 1619 0.12 10000 0 695 0.14 8095 1 2303 0.03 8471 1 2669 0.08

3-bin DP pt ph
t

n time opt nodes gap time opt nodes gap time opt nodes gap time opt nodes gap

10 21 5 163 0.09 500 5 444 0.10 2 5 1 0.08 142 5 455 0.10
20 6002 2 1980 0.11 5490 4 1237 0.11 37 5 74 0.10 3165 5 2057 0.09
50 6052 2 1042 0.14 6927 3 504 0.11 160 5 148 0.08 7038 2 1479 0.12

Above stop gap 1e-4, below stop gap 1e-3 (even less in practice)

pt formulation promising: maybe smaller exact formulation?

Structured DW may make DP/ph
t competitive
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Conclusions

Unit Commitment problem = an endless source of inspiration

“Challenging problems require good methodologies, challenging
problems motivate methodological advances”: very true for me

1st complete (correct and correctly proven) convex hull formulation
for (single)-UC with ramping and nonlinear costs

Uses Perspective Reformulation, of course :-)

Technical lemma fully expected but still possibly useful

f ∈ C 1?? I don’t really think so

Possibly several other more star-shaped MINLPs

“Large” formulations possibly useful, trade-offs to be navigated

(did I mention Structured DW already?)
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Conclusions2

Just a small step in a long chain of problems

. . . but this is another story
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