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dTransmission planning under uncertainty
dOption value of flexibility for fransmission planning

QESO/DSO operational challenge: whole-system
approach

dSummary
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- Electricity

Facing European targets for reduction of greenhouse
gas emissions while maintaining high quality of
supply and low cost

I Transport (incl. Fuels)

Il Hedting

I service

¥ Heavy Industry
Agriculture & Other Industry
Europe 2015

Net CO, by point of emission

(Gt CO2 p.a.)

—> Electricity : Increase share of renewable energy sources

—> Other Energies : move uses to low emission energy sources

s* Optimise balance between new investments and optimum use of existing assets

*** Maximise use of all (both traditional and emerging) flexibilities

plandres will provide : the integrated representation of the system which is

necessary in order to simulate the energy system expansion and operation thus

helping Europe to achieve its objectives with the lowest cost
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Main objectives

__________________________________________________

Investment

Capacity Investment Model
|::> (stochastic investment planning with transport)

Transmission Grid Expansion Model

(along pathway considering sector coupling) (stochastic expansion planning)

Q An end-to-end planning and operation
I A IJ‘:t """""""

'
I .

| Multimodal Investment Model
1

\

tool, composed of a set of optimization models o
based on an integrated modelling of the pan- === = IR [t —

Q an efficient IT platform ,
0 and “state-of-the-art” solution algorithms - —

Model I reservoirs Mid-Term Management Energy Mix / new 1
I values’ c\ui — ;n = Aggregated Grid 1
European Energy System, ] ¥ | sades [ omc
8 I[ European Unit Commitment Model JR—(—, OperationMode
1 icity + i lmﬂ"mﬂFm'ﬁTmms"P:'ggI:‘l"ﬁliﬁw services)
I
I
I

3 case studies highlighting adequacy and relevance :

A set of public data, -Sector coupling : which energy mix for achieving COP 217
European Scale, 2015 to 2050 -Cost of RES integration, value of flexibility, climate change
-Transmission expansion
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End-to-end planning and operation tool: set of optimization models
based on an integrated modelling of the pan-European Energy System

"Investment layer: .

O o B e e e -

Multi Energy Investment Model

Capacity Expansion Model
(stochastic investment planning)

Transmission Grid Expansion Model
(stochastic expansion planning)

Determine investment :|_(a'°"mm~wc°m«mz°'°°ww

decisions

=sScenario valuation: T i

Scenario Valuation

Evaluate investment

Clustering Transmission Grid

Seasonal Storage
Valuation (Hydro)

decisions, operations Eiies

planning
"Analysis/additional

j

g |

European Unit Commitment Model
(Aggregated Modelling of Transmission Grid)

Transmission

e Grid
Operation Model

3 *

 ——

tools: Evaluate
impact on electricity E"'m“'

& gas grid
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Schedules,
I
Constraints

Gas Network Mode!

Model

Electricity
Distributed lh Distribution
Distribution




3 Case studies to highlight the tool’s
adequacy and relevance

Sector coupling: which energy mix
for achieving COP 21?7

Based on a Multi-modal European energy
concept for achieving COP 21

with perfect foresight, considering sector
coupling of electricity, heat & cold, traffic,
fuel/gas; and coupling to gas grids

Strategic development of the
pan-European transmission

network

without perfect foresight and considering
long-term uncertainties

Assessing cost of RES integration, i Cd;SEft"‘f‘Em‘t
value of flexibilities and impact of - o et Ll

climate change for the European
electricity system

will be necessary to.enable lea

Olon peS l.‘ . integration of a high'share of r ewat
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* Question: where, when and how much capacity to build?

* In thermal-dominated systems, transmission planning is driven by the need to meet peak demand
with sufficient reliability.

* In systems with intermittent energy sources, transmission planning is driven by cost-benefit
considerations

max{social welfare} = min{total cost}
= The future system evolution is affected by significant uncertainty: _ Total system cost
= Short-term Uncertainties (operational timescale) | Data-driven gap;;r;?\ll
statistical 3 ! Cost of transmission

Long-Term Uncertainties (investment timescale) mOdEISREN S investment

— Location, size and technology of new
generation plants Cost of
Investment costs of novel technologies | constrained energy
(e.g. storage) — >
Long-term demand growth due to Described via Network Capacity
electrification of transport and heat scenario trees

Long-term price trends (e.g. coal, gas, CO2)




Imperial College
Why it is important?

= Capital decisions in power systems are largely irreversible.
This creates the risk of inefficient investment (stranded assets).
= There is learning regarding future developments (inter-temporal
resolution of uncertainty).

= The planner can exert managerial flexibility in his decision making;
‘Fit-and-forget’ vs. ‘Wait-and-see’.

4 )
Planning-under-uncertainty optimisation frameworks are

fundamental for identifying openings for strategic action
\ Y,
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I[EEE-RTS: Scenario 1
e 24 buses my = 0.5 (51)
e 39lines e = 015
* 28 generators S :
. 800 MW cenario 2
* 5 typical weeks (peak, (S2)
winter, spring, g = 0.15
summer, autumn) of o) Scenario 3
168 hours (S3)
m; = 0.35
_ Scenario 4
We test three different models: (S4)

*D-1: Deterministic planning model where all asset types are allowed.
*S-I: Stochastic planning model where only investment in line reinforcements is allowed.
*S-1l: Stochastic planning model where investment in all asset types is allowed.

oloNé es

Bl




Imperial College

London

oloN

N

4 es

Available assets for investment are shown below:

Table I

Transmission Line Reinforcement Options

Reinforcement Annualized A
Asset Type Capacity [MW] | Capital Cost [E/year] Build Time
Option A 200 1,500,000 1 epoch
Option B 400 2,500,000 1 epoch
Table II
Alternative Investment Options
Asset Type Annualized Capital Cost [£/year] Build Time
Phase-shifter 600,000 0 epochs
Storage device 15,000,000 0 epochs

QB maximum shift angle: 30°
Storage Charge/Discharge rate: 400MW
Storage Energy Capacity: 1600 MWh
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Storage is sub-optimal under full

knowledge of the future Investment Decisions Costs (Em)
Epoch 1 Epoch?2 Epoch 3 IC oC TC E{IC} E{OC} E{TC}
S1 A (3-9), B (3-24), A (3-9), PS (15-16) 91.3  4957.4 504838
B (15-24) PS (3-9), PS (11-14)
_ S2 A (3-9), A (3-24), PS (11-14) - 52.9 5267.7 5320.6
D- A (15-24) 449 5603.8 5648.7
S3 - A (3-9), A (3-24), PS (9-12), PS (10-12), | 33.6 58349 5868.6
A (15-24) PS (11-13)
S4 - . - 0.0 62951 62951
S1 B (3-24) A (1-3), A (3-9), A (14-16), - 87.6 50787 5166.3
B (15-16), B (15-24)
- S2 B (3-24) A (1-3), A (3-9), A (14-16), - 87.6 53365 5424.1
- B (15-16), B (15-24) 57.4  5665.9 5723.3
S3 B (3-24) - - 27.2 5897.1 5924.4
S4 B (3-24) - - 272 62951 6322.3
S1 - A (3-9), B(3-24), B(15-24),  PS(3-9), PS(8-9), | 149.2 5009.9 5159.1
PS (12-13), PS (16-19), PS (16-17)
STOR (24)
= S2 - A (3-9), B (3-24), B (15-24),  PS (9-11), PS (10-12) | 147.6 5253.7 5401.3
STOR (24)
S3 - A (3-24) PS (9-11), PS (13-23) | 12.9 5875.4 5888.3
S4 . A (3-24) . 95 62951 6304.6
Conservative first-stage Ability to invest in storage defers long-term Obtion Val ¢
® commitments to conventional commitments to second stage (conditional on Flp '?t: Zueto
oloNé: es reinforcements high-growth scenarios) exible Assets
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*Fsi
ﬁr,
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1
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3

e 118 bus system / 186 lines _
* 54 Conventional generators /99 Loads of”
* Tree with 27 scenarios, 40 nodes, 4 stages

. 3candidate storage technologies, 3 candidate line types
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w Reinforcement Ce,w K, w Ve, w
Capacity [MW] S/AMW km yr) S/(km yr)

A 200 76 91200 1. V¢

B 400 76 121600 1. V¢
Technology Bus
Pumped Storage Hydro (PSH): 38, 63, 64, 65, 68, 81
Compressed Air Energy Storage (CAES): 12, 38, 63, 64, 65, 68, 81, 117
Lithium lon Batteries (LI-ION): 26, 63, 68, 69, 80, 89, 116, 117
Technology it 7 h pe yH

($/yr) (MWh) (MW)
PSH 8,100,000 1000 250 0.8 2
CAES 290,175 360 15 0.7 1
LI-ION 1,547,600 20 5 0.92 0
oloNe eS
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Stochastic solution

Deterministic solutions for different scenarios

Epochs Cost (Sm)
IS 1 2 3 1C 0cC TC
1 | S(2:63,64)  A(97) A(93,05,06) | 177 13040 14117
S(2:63—65,68,117) S(2;38,63 —
65,68, 117)
9 | - S(2;117) A(93,94) 68 14876 14944
5(2:63)
19 | S(2:63,117) S(2:63,64)  A(93,104), B(97)| 128 14800 14928
S(2: 63, 64)
27 5(2;117) - - 3 15803 15806

Ability to invest in storage (flexibility)
defers long-term commitments to
second stage (conditional on high-

growth scenarios)

oloNnéres
&

NBD| Epochs Costs (Sm)
< 2 3 4 IC ocC TC
1 | S(2;63,64) A(93,05,06,07) - 142 13000 14141
S(2:38,63 —
65, 68)
2 - - - 142 14146 14288
3 ” ” S(3;117)| 145 14341 14486
4 ” A(93,95,97) - 106 14250 14356
S(2; 63, 64)
5 - “ S(3;117)| 109 14445 14554
6 - “ ” 109 14584 14693
T - A(93,94,97) 109 14645 14754
S(2;64)
B - 109 14697 14806
9 - “ 109 14877 14986
10 | S(2:63) A(93,95,97) - 104 14390 14494
B(97)
S(2; 63, 64)
11 - - - 104 14588 14692
12 - S(3:117)| 107 14718 14825
13 A(93,97) - 72 14789 14861
S(2; 63, 64)
14 - - S(3:117)| 75 14858 14933
15 - - - 75 15062 15137
16 A(93) - 44 15086 15130
8(2; 63),
S(3;117)
17 - 44 15192 15236
18 - - 44 15335 15379
19 - A(93,104) 117 14823 14940
B(97)
S(2; 63, 64)
20 - - 117 14994 15111
21 - - S5(3;117)| 120 15197 15317
22 - A(93,97) - T4 15131 15205
5(2;63),
S(3;117)
23 - ” T4 15334 15408
24 - - - T4 15470 15544
25 - S(2:63), S$(3;117)  S5(3;63) | 12 15619 15631
26 - - - 8 15609 15617
27 - - 8 15804 15812
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Paradigm shift in
delivering security
of supply: from
redundancy in assets
to intelligence

Source of control:
from
Transmission to
Distribution:
business case for
DNO/ESO

Complexity,
Market, Regulation

16
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5 -
4

3

2

Cost savings (Ebn/year)

1
0

1
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Distribution
network centric

Transmission
network centric

Coordinated

operation and design
of the overall network

Source: Imperial’s modelling analysis

m OPEX

m D CAPEX
m | CAPEX

B T CAPEX
m G CAPEX
® Total

Coordinated TSO/DSO
allows the flexibility to
be used optimally for
minimising the whole-
system costs
How to achieve the
whole-system
optimisation?
What will be the role
of DSO to achieve
that?
Key challenges:
- Visibility of DER
- Controllability of
DER
- Local network
constraints

17



Imperial College
London

1200 -
1000 -
O\O
= 800 - m Distribution CAPEX o
U 600 - B Transmission CAPEX
E 400 - B Generation CAPEX —
--q:l- B Operating cost S’
v 200 - National Local
E“ 0 - O Total services services
>
(48]
m -200 | -
-400 _
-600 - . . . .
System cost savings from deploying demand-side flexibility
Qm ~eS based on a whole-system rather than a DSO-centric approach
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Multi Energy Investment Model
{along pathway considering sector coupling)

Investment

Capacity Expansion Model
(stochastic investment planning)

Transmission Grid Expansion Model
(stochastic expansion planning)

1'" @--;ﬂ-_-—--i- et

&:mz‘lo RESTONCH Jor Yool Clustering Transmission Grid
,-——------------——- -— D GED SR SER eEn = e
l' Seasonal Storage m _ﬂllllﬁO[l
Valuation (Hydro)
| Generation
: numbers) |

European Unit Commitment Model
(Aggregated Modelling of Transmission Grid)

Thermal
Power Plant

Central .
Intermittent
Storage (incl. Demand - "
hydro) Response o

Power-to-
Gas 1

E-Mobility

g— — —

Distributed
Storage

Distributed Load
Mngt.

Distributed
Generation

@

—---------,

_ tatus Quo Grid
I Model
Transmission Grid

Transmission
Grid
Operation Model

Gas Network Model

f

Electricity
Distribution
Model

Network reinforcement

cost

(a) Real network

(b) Representative network

i)

—

[V -

dn
Peak demand
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An IT platform for efficient implementation

A modelling system for
structured problems

mset of C++ classes
mexplicitly supporting nested

bjective [ > oc
structures i oF Block
"allows exploiting specialised  [conmstraint g | 5G] 5C | 8
solvers B Pl 2 2
: Y Y o = =
"manages dynamic changes [Variable [z > | SV SVl 28
. . . § A § DV, | DV, |... =
®"Deals with parallelization N A S
. Modification > physical representation
"ncludes various State-of-the X » -------------------------------------------------
art optimization algorithmes | L Block,[Block, | ... |
(bilevel, bundle...) e I
{ Modification, }| [< { Solver, }
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Solving algorithms

dThe latest SCIP release for
large-scale MIP problems

1StOpt, an open-source

stochastic optimization
library for large seasonal
storage problems

ONDOSolver/FiOracle, for

solving problems induced
by decomposition
algorithms

oloNéares




_Workflow

mCollects data from several sources
BExecutes tools and models

_IContainerized Compute
Environment

mSame executables run everywhere
"No dependency issues

" Add-on software (license
restricted) can be locally added in
a standardized way

" Directory structure layout
predefined so software can rely on
it cross-site

_Parallelisation embedded

oloNéres

Case study compute environment

— ++m_

D

" Plan4Res Platform

X

User (Windows/macOS/Linux)

Singularity Container

Data are cached for reuse % gﬁgesst:;;gedgfga platform

AR
N
~

Apply transformation tool

\

?pt|m'z t| t|)’r ols ts|t|ogt tSCIP StN:E;rrJr P—I Solve optimizations

\
A
A
\
]
I
!
!
i’
i’
i’
/
,
p
rd
Results are stored on the data platform Store results -
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Summary

* Increased uncertainty in future requires increased system flexibility to
deal with operational and planning uncertainty

* Flexibility has an option value as it enables strategic decisions to adapt
with long-term uncertainty in planning

* Stochastic optimisation application

* Flexibility will shift to distribution

* TSO-DSO coordination to maximise the value of distributed flexibility

* Integrated whole-energy system modelling application

 Efficient optimisation approaches to solve large-scale problems

 Comprehensive studies to be carried out in the last year of the project
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Thank you

Questions?

}l@h sandrine.charousset@edf.fr

@
oloes
% g‘}

www.plandres.eu

plandres

@pland4res
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