
Separable Lagrangian Decomposition for
Quasi-Separable Problems

(with application to Multicommodity Network Design)

Antonio Frangioni1 Bernard Gendron2 Enrico Gorgone3

1. Dipartimento di Informatica, Università di Pisa

2. Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise,
la Logistique et le Transport (CIRRELT), and

Department of Computer Science and Operations Research
Université de Montréal

3. Dipartimento di Matematica e Informatica, Università di Cagliari

6th International Symposium on Combinatorial Optimization

ISCO 2020

Montreal, Canada, May 6, 2020

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 2 / 39

A generic Multicommodity flow model

Graph G = (N,A), a generic Multicommodity flow model
min

∑
k∈K

∑
(i , j)∈A ckij x

k
ij +

∑
(i , j)∈A fijyij (1)∑

(i , j)∈A xkij −
∑

(j ,i)∈A xkji = bki i ∈ N , k ∈ K (2)∑
k∈K xkij ≤ uijyij (i , j) ∈ A (3)

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K (4)

y ∈ Y (5)

Often bki ≡ (sk , tk , dk), i.e., commodities K ≡ O-D pairs,
possibly with xij → dkxij , xij ∈ { 0 , 1 } (unsplittable routing)

Countless many relevant special cases:

different Y (often, but not always ⊆ { 0 , 1 }|A|) =⇒
almost all graph design problems

bipartite graph =⇒ facility location

multiple node/arc capacities by graph transformations . . .

Countless many generalizations (extra constraints, nonlinearities, . . .)

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 3 / 39

Multicommodity flow applications

Pervasive structure in logistic and transportation,
often very large (time-space =⇒ acyclic) G , “few” commodities

Common in many other areas (telecommunications, energy, . . .),
possibly “small” (undirected) G , “many” commodities

Interesting links with many hard problems (e.g. Max-Cut)

Hard to solve in general: many (difficult) problems in one

Even continuous versions “hard”: very-large-scale LPs

Many sources of structure =⇒ the paradise of decomposition1,2

1
Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Man. Sci., 1958

2
Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Op. Res., 1960

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 4 / 39

(Very) Classical decomposition approaches

Lagrangian relaxation3 of linking constraints:
(3) + (4): =⇒ flow (shortest path) relaxation

(2): =⇒ knapsack relaxation

others possible4

Benders’ decomposition5 of linking variables:
design (y) variables are “naturally” linking

Benders’ cuts are metric inequalities defining the multiflow feasibility

Linking variables can be artificially added (resource decomposition)6

xkij ≤ ukij ,
∑

k∈K ukij ≤ uij

This talk about Lagrange, but many ideas can be applied to Benders7

3
Geoffrion “Lagrangean relaxation for integer programming” Math. Prog. Study, 1974

4
Kazemzadeh, Bektas, Crainic, F., Gendron, Gorgone “Node-Based Lagrangian Relaxations for Multicommodity Capacitated

Fixed-Charge Network Design” Technical Report CIRRELT-2019-21, 2019
5

Benders “Partitioning procedures for solving mixed-variables programming problems” Num. Math., 1962
6

Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci. 1977
7

van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches, with Application [. . .]” CO&A, 2016

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 5 / 39

Decomposition 101

Simplifying the notation:

(Π) max { cx : Ax = b , x ∈ X }
Ax = b “complicating” ≡ optimizing upon X “easy”

Almost always X =
⊗

h∈K X
h (K 6= K) ≡ Ax = b linking constraints

The best possible (convex = solvable) relaxation

(Π̄) max { cx : Ax = b , x ∈ conv(X) } (6)

All our X compact, represent conv(X) by vertices

conv(X) =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
=⇒ Dantzig-Wolfe reformulation2 of (Π̄):

(Π̃)


max c

(∑
x̄∈X x̄θx̄

)
A
(∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 6 / 39

D-W decomposition ≡ Lagrangian relaxation

B ⊂ X (small), solve master problem restricted to B

(ΠB) max { cx : Ax = b , x ∈ conv(B) }

feed (partial) dual optimal solution λ∗ (of Ax = b) to pricing problem

(Πλ∗) max { (c − λ∗A)x : x ∈ X } [+ λ∗b]

(Lagrangian relaxation), optimal solution x̄ of (Πλ∗)→ B

Dual: (∆B) min
{
fB(λ) = max { cx + λ(b − Ax) : x ∈ B }

}
fB = lower approximation of “true” Lagrangian function

f (λ) = max { cx + λ(b − Ax) : x ∈ X }

=⇒ (∆B) outer approximation of Lagrangian dual ≡ (Π̄)

(∆) min
{
f (λ) = max { cx + λ(b − Ax) : x ∈ X }

}
(7)

Dantzig-Wolfe decomposition ≡ Cutting Plane approach to (∆)8

8
Kelley “The Cutting-Plane Method for Solving Convex Programs” Journal of the SIAM, 1960

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 7 / 39

All well and nice, but does it work well?

By-the-book? Not really
pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

λ∗ immediately shoots much farther from optimum than initial point

≡ having good initial point not much useful

Apparently no improvement for a long time as information slowly accrues

A mysterious threshold is hit and “real” convergence begins

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 8 / 39

All well and nice, but does it work well?

By-the-book? Not really
pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

λ∗ immediately shoots much farther from optimum than initial point

≡ having good initial point not much useful

Apparently no improvement for a long time as information slowly accrues

A mysterious threshold is hit and “real” convergence begins

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 8 / 39

All well and nice, but does it work well?

By-the-book? Not really
pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

λ∗ immediately shoots much farther from optimum than initial point

≡ having good initial point not much useful

Apparently no improvement for a long time as information slowly accrues

A mysterious threshold is hit and “real” convergence begins

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 8 / 39

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 9 / 39

How to deal with instability

λ∗k+1 can be very far from λ∗k , where fB is a “bad model” of f

If {λ∗k} is unstable, then stabilize it around Current point λ̄

Stabilizing term Dt with parameter t, stabilized master problems

(∆B,λ̄,Dt
) min

{
fB(λ̄+ d) +Dt(d)

}
(ΠB,λ̄,Dt

) max
{
cx + λ̄(b − Ax)−D∗t (Ax − b) : x ∈ conv(B)

} (8)

(“∗” = Fenchel’s conjugate): a generalized augmented Lagrangian

Change λ̄ when f (λ̄+ d∗)� f (λ̄), appropriate D =⇒ converges9

Choosing t nontrivial

Aggregation trick: right D =⇒ still converges with “poorman bundle”

B = { x∗ } (although rather slowly10 ≈ volume11 ≡ subgradient)

9
F. “Generalized Bundle Methods” SIOPT, 2002

10
Briant, Lemaréchal, et. al. “Comparison of bundle and classical column generation” Math. Prog., 2006

11
Bahiense, Maculan, Sagastizábal “The volume algorithm revisited: relation with bundle methods” Math. Prog., 2002

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 10 / 39

What is an appropriate stabilization?

Simplest: Dt ≡ ‖ d ‖∞ ≤ t, D∗t = t‖ · ‖2
2 (“boxstep”)12

Better13: Dt = 1
2t ‖ · ‖

2
2, D∗t = 1

2 t‖ · ‖
2
2 (may use specialized QP solvers14)

Keep LP master: piecewise-linear approximations15

d++-

+-

D

- s

+

+

-

+-

-

D*

d++-

+-

+- D

- s

+
+

-

+- +-

-

D*

Several other ideas16 (level stabilization, centres, better “Hessian”, . . .)

12
Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” OR, 1975

13
Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, 1978

14
F. “Solving semidefinite quadratic problems within nonsmooth optimization algorithms” Computers & O.R., 1996

15
Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Disc. Appl. Math., 2009

16
F., “Standard Bundle Methods: Untrusted Models and Duality” in Numerical Nonsmooth Optimization: . . . , 2020

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 11 / 39

All well and nice, but does it work well?

It depends on what “well” means, but surely better pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Black-box nonsmooth optimization is Ω(1/ε2) in general17

Convergence slow (but at lest some) until mysterious threshold hit

At least, better information accrued sooner =⇒ “quick tail” starts sooner

17
Nemirovsky, Yudin “Problem Complexity and Method Efficiency in Optimization” Wiley, 1983

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 12 / 39

All well and nice, but does it work well?

It depends on what “well” means, but surely better pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Black-box nonsmooth optimization is Ω(1/ε2) in general17

Convergence slow (but at lest some) until mysterious threshold hit

At least, better information accrued sooner =⇒ “quick tail” starts sooner

17
Nemirovsky, Yudin “Problem Complexity and Method Efficiency in Optimization” Wiley, 1983

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 12 / 39

Disaggregate master problem

Exploit separability: X = X 1 × X 2 × . . .× X |K | =⇒
conv(X) = conv(X 1)× conv(X 2)× . . .× conv(X |K |) =⇒
(ΠB) max

{∑
k∈K c

kxk :
∑

k∈K A
kxk = b , xk ∈ conv(Bk) k ∈ K

}
≡

max
∑

k∈K c
k
(∑

x̄k∈X k x̄kθkx̄
)∑

k∈K A
k
(∑

x̄k∈X k x̄kθkx̄
)

= b∑
x̄k∈X k θkx̄ = 1 , θk ≥ 0 k ∈ K

Aggregated case: θk = θh, h 6= k (rather innatural)

(Many) more columns but sparser, more rows

Can be seen as a reformulation trick in original space18

Dual: f (λ) is a sum-function, so fB also should be

(∆B) min
{
λb +

∑
k∈K f

k
B (λ) = max { (ck − λAk)xk : xk ∈ Bk }

}
18

Jones, Lustig, et. al. “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math. Prog., 1993

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 13 / 39

All well and nice, but does it work well?

Has several trade-offs, but surely converges faster

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

Rel
ativ

e G
ap

Master problem size ≈ time increases, but

convergence speed increases a lot =⇒ most often better

It still has to be stabilized (most of the times)

Can play the partial aggregation trick19 but details still rather unclear

19
Helmberg, Pichler “Dynamic Scaling and Submodel Selection in Bundle Methods [. . .]” Preprint 2017-04, TU Chemnitz, 2017

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 14 / 39

All well and nice, but does it work well?

Has several trade-offs, but surely converges faster

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

Rel
ativ

e G
ap

Master problem size ≈ time increases, but

convergence speed increases a lot =⇒ most often better

It still has to be stabilized (most of the times)

Can play the partial aggregation trick19 but details still rather unclear
19

Helmberg, Pichler “Dynamic Scaling and Submodel Selection in Bundle Methods [. . .]” Preprint 2017-04, TU Chemnitz, 2017

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 14 / 39

“Easy components”

Separable subproblem with “easy component”:

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 + A2x2 = b

}
X 1 arbitrary, X 2 has compact convex formulation

Example: y ∈ { 0 , 1}|A| (Fixed-Charge MMCF)

Lagrangian function f (λ) = f 1(λ) + f 2(λ) (−λb), two components

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 15 / 39

“Easy components”

Separable subproblem with “easy component”:

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 + A2x2 = b

}
X 1 arbitrary, X 2 has compact convex formulation

Example: y ∈ { 0 , 1}|A| (Fixed-Charge MMCF)

Lagrangian function f (λ) = f 1(λ) + f 2(λ) (−λb), two components

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 15 / 39

“Easy components”

Separable subproblem with “easy component”:

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 + A2x2 = b

}
X 1 arbitrary, X 2 has compact convex formulation

Example: y ∈ { 0 , 1}|A| (Fixed-Charge MMCF)

Lagrangian function f (λ) = f 1(λ) + f 2(λ) (−λb), two components

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 15 / 39

The master problems

Primal master problem:

(ΠB) max


c1x1 + c2(x2)

A1x1 − A2x2 = b

x1 ∈ conv(B) , x2 ∈ X 2

≡ max


c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2)

A1

(∑
x̄1∈B x̄1θx̄1

)
+ A2x2 = b∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g

(9)

“just use the easy set in the master problem”

Dual master problem: (∆B) min
{
λb + f 1

B (λ) + f 2(λ)
}

Barring some details (do not translate f 1
B), everything works20

Of course, stabilization + multiple easy/hard components . . .

20
F., Gorgone “Bundle methods for sum-functions with “easy” components [. . .]” Math. Prog., 2014

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 16 / 39

All well and nice, but does it work well?

You have to do it right (let information accumulate)

Cplex easy aggregate volume
dual 1e-6 1e-12 time it gap time it gap

39 26 32 322 10320 1e-6 6 871 8e-3
132 28 56 294 5300 1e-6 12 831 9e-3
301 21 26 5033 27231 1e-6 26 794 3e-3

1930 133 133 3122 14547 1e-6 51 760 4e-2
131 2 3 344 7169 1e-6 12 827 3e-3
708 246 337 2256 17034 2e-5 29 869 1e-2

2167 284 508 5475 15061 3e-6 58 817 2e-2
8908 242 253 11863 13953 1e-6 109 765 2e-2

Much better accuracy/time than Cplex and competing decompositions

Can be extended to dynamic easy components21

You need all the tricks of the trade ≡ master problem reformulations

21
F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 17 / 39

All well and nice, but does it work well?

You have to do it right (let information accumulate)

Cplex easy aggregate volume
dual 1e-6 1e-12 time it gap time it gap

39 26 32 322 10320 1e-6 6 871 8e-3
132 28 56 294 5300 1e-6 12 831 9e-3
301 21 26 5033 27231 1e-6 26 794 3e-3

1930 133 133 3122 14547 1e-6 51 760 4e-2
131 2 3 344 7169 1e-6 12 827 3e-3
708 246 337 2256 17034 2e-5 29 869 1e-2

2167 284 508 5475 15061 3e-6 58 817 2e-2
8908 242 253 11863 13953 1e-6 109 765 2e-2

Much better accuracy/time than Cplex and competing decompositions

Can be extended to dynamic easy components21

You need all the tricks of the trade ≡ master problem reformulations

21
F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 17 / 39

All well and nice, but does it work well?

You have to do it right (let information accumulate)

Cplex easy aggregate volume
dual 1e-6 1e-12 time it gap time it gap

39 26 32 322 10320 1e-6 6 871 8e-3
132 28 56 294 5300 1e-6 12 831 9e-3
301 21 26 5033 27231 1e-6 26 794 3e-3

1930 133 133 3122 14547 1e-6 51 760 4e-2
131 2 3 344 7169 1e-6 12 827 3e-3
708 246 337 2256 17034 2e-5 29 869 1e-2

2167 284 508 5475 15061 3e-6 58 817 2e-2
8908 242 253 11863 13953 1e-6 109 765 2e-2

Much better accuracy/time than Cplex and competing decompositions

Can be extended to dynamic easy components21

You need all the tricks of the trade ≡ master problem reformulations

21
F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 17 / 39

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 18 / 39

Motivation: knapsack decomposition

Relax the flow conservation constraints (2)

min
∑

(i , j)∈A
(∑

k∈K (ckij − πki + πkj)xkij + fijyij
)∑

k∈K dkxkij ≤ uijyij (i , j) ∈ A

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K

y ∈ Y

If Y = { 0 , 1 }|A|, then it decomposes by arc

If xkij continuous, continuous knapsack + discrete decision =⇒
no integrality property =⇒ better bound

Still reasonable if xkij discrete (knapsack, costly but even better bound)

Used to be one of the best choices for Lagrangian approaches22,23

22
Crainic, F., Gendron “Bundle-based relaxation methods for multicommodity [. . .] network design” Disc. Appl. Math., 2001

23
Holmberg, Hellstrand “Solving the uncapacitated network design problem by a Lagrangian heuristic [. . .]” OR, 1998

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 19 / 39

Knapsack decomposition for non-separable Y

Still solvable with (appropriate) Y ⊂ { 0 , 1 }|A|: first

f ∗ij (π) = min
∑

k∈K (ckij − πki + πkj)xkij∑
k∈K dkxkij ≤ uij

0 ≤ xkij ≤ ukij k ∈ K

and then min
{ ∑

(i , j)∈A(f ∗ij (π) + fij)yij : y ∈ Y }

Computational cost ≈ same (if Y not too nasty), but

Lagrangian function no longer separable

Wave goodbye to disaggregate master problem =⇒ easy components

=⇒ knapsack decomposition fallen out of favour

Still, the Lagrangian problem is somewhat separable

We want to “show this quasi-separability to the master problem”

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 20 / 39

General setting: quasi-separable problems

Set of N quasi-continuous (vector) variables xi governed by yi

max dy +
∑

i∈N cixi (10)

Dy +
∑

i∈N Cixi = b (11)

Aixi ≤ biyi i ∈ N (12)

xi ∈ Xi i ∈ N (13)

y ∈ Y (14)

m linking constraints (11): Lagrangian relaxation

φ(λ) = λb+ max
{

(d −λD)y +
∑

i∈N(ci −λCi)xi : (12) , (13) , (14)
}

Two-stage solution procedure

φi (λ) = max
{

(ci − λCi)xi : xi ∈ Xi

}
i ∈ N (15)

φ(λ) = λb + max
{ ∑

i∈N(di − λD i + φi (λ))yi : y ∈ Y
}

(16)

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 21 / 39

Making it separable: the dumb way

D-W reformulation is not disaggregate

max
∑

(ȳ ,x̄)∈YX
(
dȳ +

∑
i∈N ci x̄i

)
θ(ȳ ,x̄) (17)∑

(ȳ ,x̄)∈YX
(
Dȳ +

∑
i∈N Ci x̄i

)
θ(ȳ ,x̄) = b (18)∑

(ȳ ,x̄)∈YX θ(ȳ ,x̄) = 1 , θ(ȳ ,x̄) ≥ 0 (ȳ , x̄) ∈ YX (19)

Can be made so the hard way: also relax (12) (µ = [µi]i∈N ≥ 0)

φ(λ, µ) = λb + ψ(λ, µ) +
∑

i∈N ψi (λ, µi) with (20)

ψi (λ, µi) = max
{

(ci − λCi − µiAi)xi : xi ∈ Xi

}
(21)

ψ(λ, µ) = max
{ ∑

i∈N(di − λD i − µibi)yi : y ∈ Y
}

(22)

Many more multiplayers (|K ||A| in FC-MMCF)

Can easily destroy any advantage due to separability

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 22 / 39

Making it separable: the better way

“Easy component” Y version:

max dy +
∑

i∈N
∑

x̄i∈Xi
(ci x̄i)θx̄i (23)

Dy +
∑

i∈N
∑

x̄i∈Xi
(Ci x̄i)θx̄i = b (24)∑

x̄i∈Xi
(Ai x̄i)θx̄i ≤ yi i ∈ N (25)∑

x̄i∈Xi
θx̄i = 1 i ∈ N (26)

y ∈ Y , θx̄i ≥ 0 x̄i ∈ Xi , i ∈ N

Nifty idea: replace (25)–(26) with∑
x̄i∈X̄i

θx̄i = yi i ∈ N (27)

then relax (27) with multipliers γ = [γi]i∈N ≥ 0

Multipliers are from master problem constraints (which they are . . .)

Non-easy component version obvious

Much fewer multipliers (1 instead of m), much more elegant

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 23 / 39

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 24 / 39

Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good because a similar approach has been used
for CFL24

We haven’t had the time to test this yet

It may be interesting to discuss a bit why

24
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 25 / 39

Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good because a similar approach has been used
for CFL24

We haven’t had the time to test this yet

It may be interesting to discuss a bit why

24
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 25 / 39

Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good because a similar approach has been used
for CFL24

We haven’t had the time to test this yet

It may be interesting to discuss a bit why

24
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 25 / 39

Computational results

Er . . . I said it’d be quick . . .

No, seriously, we still don’t have them

We believe they will be good because a similar approach has been used
for CFL24

We haven’t had the time to test this yet

It may be interesting to discuss a bit why

24
Klose, Görtz “A branch-and-price algorithm for the capacitated facility location problem” EJOR, 2007

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 25 / 39

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 26 / 39

Putting all this in practice

. . . easier said than done

Specialized implementations for one application “relatively easy”

General implementations for all problems with same structure harder:
it took ≈ 10 years from idea to paper for easy components
on top of existing, nicely structured C++ bundle code

Issue: extracting structure from problems

Issue: really using this in a B&C approach
≈ 20 years doing this well for Multicommodity Network Design

Especially hard: multiple nested forms of structure, reformulation

Current modelling/solving tools just don’t do it

So we are building our own under the auspices of plan4res

https://www.plan4res.eu/

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 27 / 39

Design goals

A modelling system which:

explicitly supports the notion of block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised solvers on blocks with specific structure

caters all needs of complex solution methods: dynamic generation of
constraints/variables, modifications in the data, reoptimization, . . .

Open source (LGPL3) C++17 library

https://gitlab.com/smspp/smspp-project

Easily extendable“core” classes + [interface with] efficient general solvers

Built-in asynchronous and parallel capabilities (thanks Cray!)

Set of (more or less) specialized blocks/solvers for plan4res

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 28 / 39

The Core SMS++

ObjectiveFunction

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 29 / 39

Block

Block = abstract class representing the general concept of
“a part of a mathematical model with a well-understood identity”

Each :Block a model with specific structure

Physical representation: whatever data describes the instance

Abstract representation of a Block:
one Objective (but possibly vector-valued)

any # of groups of (pointers) to static/dynamic Variable

any # of groups of (pointers) to static/dynamic Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array thanks to boost::any

Any # of sub-Blocks (recursively), possibly of specific type

Many support mechanisms:
general netCDF serialize/deserialize

factory + “methods factory”

Configuration, BlockConfiguration, BlockSolverConfiguration

R3Block concept . . .

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 30 / 39

Solver

Any # of Solver attached to a Block to solve it

:Solver for a specific :Block can use the physical representation
=⇒ no need for explicit Constraint
=⇒ abstract representation of Block only constructed on demand

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraint can be generated on demand

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modification

Somehow slanted towards RealObjective (optimality guarantees =
upper and lower bounds)

CDASolver:Solver is “Convex Duality Aware”: bounds are associated
to dual solutions (possibly, multiple)

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 31 / 39

Modification

Most Block components can change (but not all)

Any change is communicated to each interested Solver (attached to the
Block or any of its ancestor) via a Modification object

Two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraint)

Each Solver has the responsibility of cleaning up its list of
Modification (smart pointers → memory eventually released)

Solver supposedly reoptimize to improve efficiency, which is easier if you
can see all Modification at once (may cancel each outer out)

GroupModification (recursively) packs many Modification together

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 32 / 39

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone), should always work

Available R3Blocks Block::-specific

R3Block completely independent (new Variable/Constraints),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solvers for original Block:
map back solution() (best effort in case of dynamic Variables)

Sometimes keeping R3Block in sync with original necessary:
map forward modifications(), task of original Block

map forward solution() and map back modifications() useful,
e.g., dynamic generation of Variable/Constraints in the R3Block

Block:: is in charge of all this, thus decides what it supports

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 33 / 39

Function

LagBFunction

{ LinearFunction }Block

Function C05Function C15Function

LinearFunction
BendersBFunction

DSepQFunction

PolynomialFunction

...

{ LinearFunction }Block

PolyhedralFunction

Function only deals with (real) values

Handles set of Variables upon which it depends

Approximate computation supported in a quite general way25

Asynchronous Function computation possible

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variables)

25
van Ackooij, F. “Incremental bundle methods using upper models” SIOPT, 2018

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 34 / 39

C05Function

C05Function/C15Function deal with 1st/2nd order information

General concept of “linearization” (gradient, Clarke subgradient, . . .)

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05Function::LagBFunction has one isolated Block

+ set of (so far) LinearFunction to define Lagrangian term

asynchronous Solver =⇒ asynchronous Function

Solutions from Block ≡ linearizations: Solver provides local pool

LagBFunction handles global pool

All changes lead to reoptimization-friendly Modification

BendersBFunction similar (linearization ≡ dual solution)

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 35 / 39

Application to Multicommodity flows

NDOSolver

BundleSolver

Block2Block1 ...

MMCFBlockMMCFFlwDcmpBlock

FiOracle

get_R3_Block()

OF
LagBFunction

Block

map_back_solution()

linear functions
...

MCFBlock MCFSolver MCFClass

SPTree

MCFSimplex
...

MCFBlock2

MCFBlock1

...

NetDesBlock

Different reformulations from same basic Block

Streamlined interface with decomposition solvers

General decomposition-based B&B now (perhaps) possible
Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 36 / 39

Application to Multicommodity flows

Block2Block1 ...

MMCFBlockMMCFKSkDcmpBlock

get_R3_Block()

OF
LagBFunction

Block

map_back_solution()

linear functions
...

KnapsackBlock KnapsackSolver

CQKnPClass

DualCQKnP...

MCFBlock2

MCFBlock1

...

NetDesBlock

NDOSolver

BundleSolver

FiOracle

Different reformulations from same basic Block

Streamlined interface with decomposition solvers

General decomposition-based B&B now (perhaps) possible
Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 36 / 39

Outline

1 Multicommodity Flows & Decomposition

2 Tinkering with the master problem

3 A new master problem reformulation

4 Computational results

5 The software issue

6 Conclusions and (a Lot of) Future Work

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 37 / 39

A Lot of Work, Then Maybe Conclusions

Decomposition for Multicommodity flows a very old idea, yet
a lot of work required to make it efficient

Crucial aspect: proper reformulations of master problems

Our proposal: yet another proper reformulation of master problem

Huge challenge: make these techniques mainstream

(at least, less desperately bleeding-edge)

A new hope: structured modelling system

Beta version, not all the features you have seen are complete

Design principles have kept evolving, new ideas continue to crop up

Core nicely general, but only success in applications validate it

Overhead still largely unknown (although C++ efficient)

Asynchronous still to in its infancy (but seems nice)

Not for the faint of heart, but we are trying. Someone cares to join?

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 38 / 39

Acknowledgements

Copyright © PLAN4RES Partners 2020, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the PLAN4RES Consortium. In

addition, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for

any use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

Frangioni, Gendron, Gorgone Quasi-Separable Decomposition for ND ISCO 2020 39 / 39

	Multicommodity Flows & Decomposition
	Tinkering with the master problem
	A new master problem reformulation
	Computational results
	The software issue
	Conclusions and (a Lot of) Future Work

