
The Long Road to Practical Decomposition Methods

Part III: Many Twists and Turns

Part IV: A Useful Companion on the Road

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

“Napoli” — February 9, 2021

Meta–Outline

Part I: Why Leaving the Bed At All?

Part II: The Long Journey Begins

Part III: Many Twists and Turns

Part IV: A Useful Companion on the Road

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 1 / 65

Outline – Parts III & IV

1 Stabilization

2 Dual-Optimal Cuts

3 Cuts Selection

4 Disaggregated Model

5 Easy Components

6 Structured Decomposition

7 Incremental, Inexact, Asynchronous

8 A Useful Companion on the Road

9 Conclusions (for good)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 2 / 65

Part III:
Many Twists and Turns

Stabilization

Issue with the Cutting-Plane approach: instability

y∗k+1 can be very far from y∗k , where fB is a “bad model” of f

f

fB

y*k y*k+1

. . . as a matter of fact, infinitely far

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: { y∗k } is unstable, has no locality properties ≡
convergence speed does not improve near the optimum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 3 / 65

Issue with the Cutting-Plane approach: instability

y∗k+1 can be very far from y∗k , where fB is a “bad model” of f

f

fB

y*k y*k+1

. . . as a matter of fact, infinitely far

(ΠB) empty ≡ (∆B) unbounded ⇒ Phase 0 / Phase 1 approach

More in general: { y∗k } is unstable, has no locality properties ≡
convergence speed does not improve near the optimum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 3 / 65

The effects of instability

What does it mean?

a good (even perfect) estimate of
dual optimum is useless!

frequent oscillations of dual values

“bad quality” of generated columns

=⇒ tailing off, slow convergence

Upper bound (dual)

Lower bound (primal)

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width time iter. columns
∞ 4178.4 % 509 % 37579 %

200.0 835.5 20.0 119 23.4 9368 24.9
20.0 117.9 2.8 35 6.9 2789 7.4

2.0 52.0 1.2 20 3.9 1430 3.8
0.2 47.5 1.1 19 3.7 1333 3.5

Works wonders! . . .

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 4 / 65

The effects of instability

What does it mean?

a good (even perfect) estimate of
dual optimum is useless!

frequent oscillations of dual values

“bad quality” of generated columns

=⇒ tailing off, slow convergence

Upper bound (dual)

Lower bound (primal)

The solution is pretty obvious: stabilize it

Gedankenexperiment: starting from known dual optimum,
constrain duals in a box of given width

width time iter. columns
∞ 4178.4 % 509 % 37579 %

200.0 835.5 20.0 119 23.4 9368 24.9
20.0 117.9 2.8 35 6.9 2789 7.4

2.0 52.0 1.2 20 3.9 1430 3.8
0.2 47.5 1.1 19 3.7 1333 3.5

Works wonders! . . .

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 4 / 65

Stabilizing DW/Lagrange/CG

. . . if only we knew the dual optimum! (which we don’t)

Current point ȳ , box of size t > 0 (how chosen??) around it

Stabilized dual master problem[34]

(∆B,ȳ ,t) min
{
fB(ȳ + d) : ‖ d ‖∞ ≤ t

}
(1)

Corresponding stabilized primal master problem

(ΠB,ȳ ,t) max
{
cx + ȳ s − t‖ s ‖1 : s = b − Ax , x ∈ conv(B)

}
i.e., just Dantzig-Wolfe with slacks (s)

When f (ȳ + d∗)� f (ȳ), move ȳ = ȳ + d∗ (“serious step”)

Uses just LP tools, relatively minor modifications to (∆B)

Does this really work?

[34] Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” Op. Res., 1975

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 5 / 65

Computational results of the boxstep method (pds7)
!"#$

%&'()*

*(+,

*(+-

*(+.

*(+/

*(+0

(+, *(1

*(.

*(2

345

pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e3
1e4
1e5
INF

Pure multicommodity flow instance (no design)

Left = distance from final dual optimum

right = relative gap with optimal value

Stabilized with (fixed) different t, un-stabilized (t =∞)

One can clearly over-stabilize

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 6 / 65

Computational results of the boxstep method (pds18)
!"#$%

&'()*$

$)+,

$)+-

$)+.

$)+/

$)+%

$)+$,

$)0

$).

$)1

234

!"#$%

&'()*$

$)+,

$)+-

$)+.

$)+/

$)+0

$)+$

$)12

$)1$

$)10

$)1/

$)/

$).

$)-

345

All cases show a “combinatorial tail” where convergence is very quick

t = 1e+3: “smooth but slow” until the combinatorial tail kicks in,
a short-step approach not unlike subgradient methods[35]

t =∞: apparently trashing along until some magic threshold is hit

“intermediate” t work best, but pattern not clear

[35] Camerini, Fratta, Maffioli “On Improving Relaxation Methods by Modified Gradient Techniques” Math. Prog. Study, 1975

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 7 / 65

Computational results of the boxstep method (pds30)
!"#$%

&'()*+

+),%

+),-

+),.

+),/

+),0

+),+%

+),+-

+),+.

+)$

+).

+)1

234

+)5/

+)51

+)5.

+)5$

+)5-

+)5+

+),%

+),+

+),-

+),$

+)$

+).

+)1

234

!"#$%

&'()*+

+),-

+),.

+),/

+),$

+),0

+),+

+)1%

+)1+

+)10

+)1$

+)$

+)/

+).

234

t = 1e+5: initially even worse than t =∞ but ends up faster

Clearly, some on-line tuning of t would be appropriate

Perhaps a different stabilizing term would help? Why not[36]

(∆B,ȳ ,t) min
{
fB(ȳ + d) + 1

2t ‖ d ‖
2
2

}
“Because it’s not LP” =⇒ a different duality need be used

[36] Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, Pergamon, 1978

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 8 / 65

Generalized proximal/trust region stabilization

General stabilizing term D, stabilized dual problem

(∆ȳ ,D) φD(ȳ) = min
{
f (ȳ + d) +D(d)

}
with proper D, φD has same minima as f but is “smoother”

Stabilized primal problem = Fenchel’s dual of (∆ȳ ,D)

(Πȳ ,D) min
{
f ∗(s)− sȳ +D∗(−s)

}
where f ∗(x) = maxs{ xs − f (s) } the Fenchel’s conjugate of f

For our dual f , a generalized augmented Lagrangian

max
{
cx + ȳ(b − Ax)−D∗(Ax − b) : x ∈ conv(X)

}
A “primal” exists even for a non-dual f : v(Π) = −f ∗(0) = v(∆) for

(Π) max{ −f ∗(s) : s = 0 }

General theory exist[37], but never mind

[37] F. “Generalized Bundle Methods” SIOPT, 2002

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 9 / 65

Classical stabilizing terms

D = 1
2t ‖ · ‖

2
2

D∗ = 1
2 t‖ · ‖

2
2

D = 1
t ‖ · ‖1

D∗ = IB∞(1/t)

D = IB∞(t)

D∗ = t‖ · ‖1

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 10 / 65

Fancier stabilizing terms (very nonlinear)

Smooth approximation of ‖ · ‖1
[38]

D∗(s) =
∑

i Φ∗ε(si) =

{
s2
i /(2ε) if − ε ≤ si ≤ ε
|si | − ε

2 otherwise

Smooth approximation of t‖ · ‖∞[5]

D∗(s) = ln
∑

i e
tsi

Bregman functions[39]

Dȳ (d) = (ψ(ȳ + d)− ψ(ȳ)−∇ψ(ȳ)d)

with ψ fixed, strictly convex, differentiable, with compact level sets

Others (ϕ-divergences, . . .), all “very nonlinear”

[38] Pinar, Zenios “Parallel Decomposition of Multicommodity [. . .] Using a Linear-Quadratic [. . .]” ORSA J. Comp., 1992

[39] Chen, Teboulle “Convergence Analysis of a Proximal-like Minimization Algorithm Using Bregman Functions” SIOPT, 1993

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 11 / 65

A 5-piecewise-linear function

Trust region on ȳ + small penalty close + much larger penalty farther[40]

d++-

+-

+- D

- s

+
+

-

+- +-

-

D*

Slightly simplified version: only 3 pieces.

d++-

+-

D

- s

+

+

-

+-

-

D*

[40] Ben Amor, Desrosiers, F. “On the Choice of Explicit Stabilizing Terms in Column Generation” DAM, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 12 / 65

A 5-piecewise-linear master problem

(ΠB,ȳ ,D)

max c
(∑

x̄∈B x̄θx̄
)
− ȳ
(
s ′− + s ′′− − s ′′+ − s ′+

)
+γ−s ′− + δ−s ′′− + δ+s ′′+ + γ+s ′+

A
(∑

x̄∈B x̄θx̄
)

+s ′− + s ′′− − s ′′+ − s ′+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s ′− ≤ ζ− , 0 ≤ s ′+ ≤ ζ+

0 ≤ s ′′− ≤ ε− , 0 ≤ s ′′+ ≤ ε+

Same constraints as (ΠB), 4 slack variables for each constraint

Many parameters: widths Γ± and ∆±, penalties ζ± and ε±,
different roles for small and large penalties

Large penalties ζ± easily make (∆B,ȳ ,D) bounded =⇒ no Phase 0

3-pieces: either large penalty =⇒ small moves, or
small penalty =⇒ instability

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 13 / 65

A 5-piecewise-linear master problem

(ΠB,ȳ ,D)

max c
(∑

x̄∈B x̄θx̄
)
− ȳ
(
s ′− + s ′′− − s ′′+ − s ′+

)
+γ−s ′− + δ−s ′′− + δ+s ′′+ + γ+s ′+

A
(∑

x̄∈B x̄θx̄
)

+s ′− + s ′′− − s ′′+ − s ′+ = b∑
x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

0 ≤ s ′− ≤ ζ− , 0 ≤ s ′+ ≤ ζ+

0 ≤ s ′′− ≤ ε− , 0 ≤ s ′′+ ≤ ε+

Same constraints as (ΠB), 4 slack variables for each constraint

Many parameters: widths Γ± and ∆±, penalties ζ± and ε±,
different roles for small and large penalties

Large penalties ζ± easily make (∆B,ȳ ,D) bounded =⇒ no Phase 0

3-pieces: either large penalty =⇒ small moves, or
small penalty =⇒ instability

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 13 / 65

On unboundedness and early termination

A ray χ of X : x ∈ X =⇒ x + λχ ∈ X for λ→∞ =⇒
(c − yA)χ > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Aχ) in the dual

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Moving ȳ requires testing for decrease in f -value, but

when a ray is generated, f (ȳ + d∗) =∞

Ignoring convexity constraint =⇒ Proximal Point:

solve the problem exactly for ȳ before moving it

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 14 / 65

On unboundedness and early termination

A ray χ of X : x ∈ X =⇒ x + λχ ∈ X for λ→∞ =⇒
(c − yA)χ > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Aχ) in the dual

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Moving ȳ requires testing for decrease in f -value, but

when a ray is generated, f (ȳ + d∗) =∞

Ignoring convexity constraint =⇒ Proximal Point:

solve the problem exactly for ȳ before moving it

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 14 / 65

On unboundedness and early termination

A ray χ of X : x ∈ X =⇒ x + λχ ∈ X for λ→∞ =⇒
(c − yA)χ > 0 =⇒ f (y) =∞ =⇒ constraint cr ≤ y(Aχ) in the dual

One might even hide the convexity constraint:

Ax̄ →
[
Ax̄ , 1

]
, b →

[
b , 1

]
;

Ignoring the special role of v (just another y)

Advantage: everything is a constraint

This is a bad idea!

Moving ȳ requires testing for decrease in f -value, but

when a ray is generated, f (ȳ + d∗) =∞

Ignoring convexity constraint =⇒ Proximal Point:

solve the problem exactly for ȳ before moving it

Convexity constraints are good: invent them if they are not there

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 14 / 65

A Glimpse to Computational Results

State-of-the-art GenCol code, large-scale, difficult MDVS instances
(only root relaxation times)

5-pieces better than 3-pieces, 5-then-3 even better

Quadratic more “stable”, but optimized 5-pieces always faster
(quadratic has far less parameters, easier but less flexible)

Comparing 5-piecewise with (BP) or without (PP) early termination

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

time CG 139 177 235 159 3138 3966 3704 1742 3685 3065
PP 33 36 38 28 482 335 946 572 1065 2037
BP 26 28 35 21 295 257 639 352 545 1505

iter CG 117 149 200 165 408 524 296 186 246 247
PP 47 47 49 45 93 64 98 83 86 150
BP 37 43 44 36 57 53 59 49 51 101

mpt CG 88 125 165 105 1679 2004 1955 925 1984 1743
PP 13 16 17 10 189 128 428 257 542 1326
BP 10 14 15 10 100 70 329 206 334 983

Stabilization works well, approximate stabilization works better

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 15 / 65

Other Forms of Stabilization

Proximal level[41]: closest point promising given amount of decrease

(∆B,ȳ ,l) min
{

1
2t ‖ d ‖

2
2 : fB(ȳ + d) ≤ f (ȳ) −l

}
(2)

l somehow easier to manage than t, easy rules available
that allow to keep ȳ fixed (but possible in proximal, too)

Trade blows in practice, but doubly-stabilised possible[42]

Different approach: aim for center (analytic[43] or Chebychev[44]) of
localization set L = { (y , v) : fB(y) ≤ v ≤ f (ȳ) } ⊂ Rn+1

“Good” theoretical performances, but in practice a

penalty term is still required[45]

[41] Lemaréchal, Nemirovskii, Nesterov “New Variants of Bundle Methods” Math. Prog., 1995

[42] de Oliveira, Solodov “A Doubly-Stabilized Bundle Method for Nonsmooth Convex Optimization” Math. Prog., 2016

[43] Gondzio, González-Brevis, Munari “New Developments in the Primal-Dual Column Generation Technique” EJOR, 2013

[44] Ouorou “A proximal cutting plane method using Chebychev center for nonsmooth convex optimization” Math. Prog., 2009

[45] Babonneau, Beltran, Haurie, Tadonki, Vial “Proximal-ACCPM: a Versatile Oracle-Based [. . .]” Adv. Comp. Man. Sci. 2007

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 16 / 65

From Minimally to Maximally Intrusive Stabilization

Changing the master problem not strictly needed: In-Out approach[46]

computes un-stabilised d∗ but probes f (ȳ + αd∗), α ∈ (0 , 1]

Simple to implement and can still work well in practice[47]

Other extreme: D(d) = dTQd , Q = “approximation of ∇2f (ȳ)”
(?!?!) a-la quasi-Nweton

Theory exists, superlinear convergence possible[48]

Hard to make work in practice, but simpler scalings seem to work[49]

Many nice ideas[50] if you like the research line

Do work in practice but parameters (t, l , α, . . .) tuning
still an art more than a science

[46] Ben-Ameur, Neto “Acceleration of Cutting-Plane and Column Generation Algorithms [. . .]” Networks, 2007

[47] Pessoa, Sadykov, Uchoa, Vanderbeck “Automation [. . .] of [. . .] Stabilization [. . .] in Column Generation” IJoC, 2018

[48] Mifflin, Sagastizábal “A VU-algorithm for Convex Minimization” Math. Prog., 2005.

[49] Helmberg, Pichler “Dynamic Scaling and Submodel Selection in Bundle Methods for Convex Optimization” OO, 2017

[50] F. “Standard Bundle Methods: Untrusted Models and Duality” Numerical Nonsmooth Optimization, 2020

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 17 / 65

Stabilized Benders’ Decomposition

Stabilized master problem easy to do: with trust region

(BB,x̄ ,t) min
{
vB(x) : ‖ x − x̄ ‖∞ ≤ t , x ∈ X

}
pretty identical to (1) (no dual, though)

For X ⊆ { 0 , 1 }n, local branching constraint∑
i : x̄i=1(1− xi) +

∑
i : x̄i=0 xi ≤ t

However, x∗ = x̄ only =⇒ x̄ local optimum (nonconvex)
=⇒ have to increase t until t = n (∞)

Silver lining: reverse box ‖ x − x̄ ‖∞ ≥ t (nonconvex) now easy

Level stabilization a-la (2) also possible[51], pros and cons:

(BB,x̄ ,l) can be solved inexactly (but larger and more difficult),

l easier to manage than t and need not go ∞ (but no reverse box)

All in all it does work[52] (but nontrivial)

[51] van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches [. . .]” COAP, 2016

[52] Baena, Castro, F. “Stabilized Benders Methods for Large-scale Combinatorial Optimization [. . .]” Man. Sci., 2020

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 18 / 65

Dual-Optimal Cuts

Dual-Optimal Cuts

Stabilizing = restricting the dual space

The above approaches need stability center ȳ , to be updated:
it’d be nice if we could do without

Simple observation: dual constraints = primal variables
=⇒ need to add even more variables to the primal

. . . in such a way that not all dual optimal solution are cut

Actually quite simple:
the new variables must not add new primal solutions[53]

[53] Ben Amor, Desrosiers, Valério de Carvalho “Dual-optimal Inequalities for Stabilized Column Generation” Op. Res., 2006

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 19 / 65

Dual-Optimal Cuts

Stabilizing = restricting the dual space

The above approaches need stability center ȳ , to be updated:
it’d be nice if we could do without

Simple observation: dual constraints = primal variables
=⇒ need to add even more variables to the primal

. . . in such a way that not all dual optimal solution are cut

Actually quite simple:
the new variables must not add new primal solutions[53]

[53] Ben Amor, Desrosiers, Valério de Carvalho “Dual-optimal Inequalities for Stabilized Column Generation” Op. Res., 2006

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 19 / 65

Dual-Optimal Cuts for Multicommodity flows

C = directed circuits with one reversed arc (aggregated flow)

Constraints become ∑
p∈P : (i , j)∈p

fp +
∑

c∈C : (i , j)∈c

±fc ≤ uij

where “−” if (i , j) is reversed in c; hence, one also needs

0 ≤
∑

p∈P : (i , j)∈p

fp +
∑

c∈C : (i , j)∈c

±fc

Any feasible solution to the extended model can be converted into a
feasible solution to the original model

|C| ∈ O(n2) if G is planar, all-pairs SPT pricing otherwise

Some good results, other applications (Cutting Stock, different cuts)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 20 / 65

Dual-Optimal Cuts for Multicommodity flows

C = directed circuits with one reversed arc (aggregated flow)

Constraints become ∑
p∈P : (i , j)∈p

fp +
∑

c∈C : (i , j)∈c

±fc ≤ uij

where “−” if (i , j) is reversed in c; hence, one also needs

0 ≤
∑

p∈P : (i , j)∈p

fp +
∑

c∈C : (i , j)∈c

±fc

Any feasible solution to the extended model can be converted into a
feasible solution to the original model

|C| ∈ O(n2) if G is planar, all-pairs SPT pricing otherwise

Some good results, other applications (Cutting Stock, different cuts)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 20 / 65

Cuts Selection

(Feasibility) Cuts Selection

v(x) = −∞ =⇒ any ω̄ ∈W∞ gives a cut: which one is “best”?

If LP solver choses, can’t expect it to pick a “good one”

(x∗ , v∗) solution of (BB): a cut does not ∃ ⇐⇒
v(x∗) = max{ ez : Ez ≤ d − Dx } ≥ v∗

≡max{ 0z : ez∗ ≥ v∗ , Ez∗ ≤ d − Dx∗ } = 0

Hence a cut does ∃ ⇐⇒
min{ w(d − Dx∗)− w0v

∗ : wE = w0e , (w , w0) ≥ 0 } = −∞
≡ (homogeneity)

0 > min w(d − Dx∗)− w0v
∗

wE = w0e , wβ + w0β0 = 1 , (w , w0) ≥ 0

however chosen (β , β0): a proper choice improves performances[54]

[54] Fischetti, Salvagnin, Zanette “A Note on the Selection of Benders’ Cuts” Math. Prog., 2010

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 21 / 65

Disaggregated Model

Disaggregated Model for the Block-diagonal Program

The real decomposition case:

(Π) max
{ ∑

k∈K ckxk :
∑

k∈K Akxk = b , xk ∈ X k k ∈ K
}

i.e., x̄ = [x̄k]k∈K (Cartesian product of individual solutions)

Disaggregated DW reformulation:

(Π)

max

∑
k∈K ck

(∑
x̄k∈X k x̄kθkx̄

)∑
k∈K Ak

(∑
x̄k∈X k x̄kθkx̄

)
= b∑

x̄k∈X k θkx̄ = 1 k ∈ K

θkx̄ ≥ 0 x̄k ∈ X k , k ∈ K

i.e., X = X 1 × X 2 × . . .× X |K | =⇒
conv(X) = conv(X 1)× conv(X 2)× . . .× conv(X |K |)

A different multiplier θkx̄ for each k ∈ K : aggregated is θkx̄ = θhx̄ for
h 6= k =⇒ a restriction (less solutions ≡ bad)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 22 / 65

Geometry of Disaggregated Models

Given X ,

taking the convex hull of Cartesian products is smaller (bad)
than first making convex hulls and then taking the Cartesian product

From the dual viewpoint

fB(y) =
∑

k∈K f kB (y)

the sum of individual models is better than the model of the sum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 23 / 65

Geometry of Disaggregated Models

Given X , taking the convex hull of Cartesian products

is smaller (bad)
than first making convex hulls and then taking the Cartesian product

From the dual viewpoint

fB(y) =
∑

k∈K f kB (y)

the sum of individual models is better than the model of the sum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 23 / 65

Geometry of Disaggregated Models

Given X , taking the convex hull of Cartesian products is smaller (bad)
than first making convex hulls

and then taking the Cartesian product

From the dual viewpoint

fB(y) =
∑

k∈K f kB (y)

the sum of individual models is better than the model of the sum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 23 / 65

Geometry of Disaggregated Models

Given X , taking the convex hull of Cartesian products is smaller (bad)
than first making convex hulls and then taking the Cartesian product

From the dual viewpoint

fB(y) =
∑

k∈K f kB (y)

the sum of individual models is better than the model of the sum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 23 / 65

Geometry of Disaggregated Models

Given X , taking the convex hull of Cartesian products is smaller (bad)
than first making convex hulls and then taking the Cartesian product

From the dual viewpoint

fB(y) =
∑

k∈K f kB (y)

the sum of individual models is better than the model of the sum

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 23 / 65

Disaggregated Dantzig-Wolfe and Multicommodity flows

Aggregated DW: S = { (extreme) flows s = [x̄1,s , . . . , x̄k,s] }
min

∑
s∈S

(∑
k∈K

∑
(i , j)∈A ckij x̄

k,s
ij

)
θs∑

s∈S
(∑

k∈K x̄k,sij − uij
)
θs ≤ 0 (i , j) ∈ A∑

s∈S θs = 1 , θs ≥ 0 s ∈ S

Disaggregated + scaling ≡ arc-path formulation:

p ∈ Pk = { sk–tk paths }, cp cost, fp(= dkθks) flow, P = ∪k∈KPk

min
∑

p∈P cpfp∑
p∈P : (i , j)∈p fp ≤ uij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P

More columns but sparser, (a few) more rows, much more efficient[55]

Master problem size ≈ time increases, but convergence speed more so

[55] Jones, Lustig, Farwolden, Powell “Multicommodity Flows: the Impact of Formulation on Decomposition” Math. Prog. 1993

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 24 / 65

Disaggregated decomposition

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

R
el

at
iv

e
G

ap

Easily extended to any decomposable X [15]

Stabilized versions immediate

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 25 / 65

More or Less Disaggregated?

That was ≈ 30 years ago with |K | ≈ 10, still true if |K | ≈ 10000?

Aggregation is arbitrary, then why “all or nothing”?

Partition C = (C1,C2, . . . ,Ch) of K , partially aggregated model f CB
with h components f iB, each the sum over one Ci

Basically, θks = θhs only for each (h, k) ∈ Ci × Ci

Exploring the trade-off between master problem size =⇒
time and iterations, subproblems remain the same

How to choose the Ci? In general open problem

Aggregation can be dynamic[56], even more open problem,

but it can work[49]

[56] van Ackooij, F. “Incremental Bundle Methods Using Upper Models” SIOPT, 2018

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 26 / 65

Easy Components

Decomposition of Multicommodity Network Design

Multicommodity flow + arc design costs fij (zij ∈ {0, 1})

S = extreme points of z (2|A| vertices of the unitary hypercube):

min
∑

p∈P cpfp +
∑

s∈S
(∑

(i ,j)∈A fij z̄
s
ij

)
θs∑

p∈P : (i ,j)∈p fp ≤ uij
∑

s∈S z̄
s
ijθs (i , j) ∈ A∑

p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P∑
s∈S θs = 1 , θs ≥ 0 s ∈ S

Are you sure you’re sane? Arguably not:

replacing a 2n formulation with a 2n one!

. . . and with very long, dense rows

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 27 / 65

Multicommodity Network Design, the Right Way

The unitary hypercube is a cartesian product: why not S ij = {0, 1}?

zij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0.

zij ∈ [0 , 1]

(no, . . . really?!)

Arc-path formulation with original arc design variables

min
∑

p∈P cpfp +
∑

(i , j)∈A fijzij∑
p∈P : (i , j)∈p fp ≤ uijzij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
zij ∈ [0, 1] (i , j) ∈ A

Only generate the right variables

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 28 / 65

Multicommodity Network Design, the Right Way

The unitary hypercube is a cartesian product: why not S ij = {0, 1}?

zij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0.

zij ∈ [0 , 1] (no, . . . really?!)

Arc-path formulation with original arc design variables

min
∑

p∈P cpfp +
∑

(i , j)∈A fijzij∑
p∈P : (i , j)∈p fp ≤ uijzij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
zij ∈ [0, 1] (i , j) ∈ A

Only generate the right variables

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 28 / 65

Is it always this easy?

No: what if one had, say,∑
(i , j)∈A zij ≤ r ?

Design subproblem can no longer be disaggregated

But, one could write the arc-path formulation in that case, too

And could add that constraint to the master problem

Can this be stabilized? Of course it can[57]

[57] F., Gorgone “Bundle Methods for Sum-Functions With “Easy” Components: [. . .] Network Design” Math. Prog., 2014

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 29 / 65

Stabilized decomposition with “easy components”

f Lagrangian function of structured optimization problem

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 +A2x2 = b

}
i.e., f (y) = f 1(y) + f 2(y)(−yb) where

f 1(ȳ) = max
{

(c1 − ȳA1)x1 : x1 ∈ X 1
}

“easy for some reason” (efficient but “totally obscure” black box)

f 2(ȳ) = max
{
c2(x2)− (ȳA2)x2 : G (x2) ≤ g

}
“easy because a compact convex formulation is known”

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 30 / 65

Stabilized decomposition with “easy components”

f Lagrangian function of structured optimization problem

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 +A2x2 = b

}
i.e., f (y) = f 1(y) + f 2(y)(−yb) where

f 1(ȳ) = max
{

(c1 − ȳA1)x1 : x1 ∈ X 1
}

“easy for some reason” (efficient but “totally obscure” black box)

f 2(ȳ) = max
{
c2(x2)− (ȳA2)x2 : G (x2) ≤ g

}
“easy because a compact convex formulation is known”

Usual approach: disregard differences

Better idea: treat “easy” components specially

In practice: insert “full” description of f 2 in the master problem

Master problem size may increase (at the beginning), but
“perfect” information is known

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 30 / 65

“Easy components” in formulæ

Dual master problem: abstract form

(∆B,ȳ ,D) min
{
b(ȳ + d) + f 1

B (ȳ + d) + f 2(x̄ + d) +D(d)
}

Primal master problem: abstract and implementable form

(ΠB,ȳ ,D) max

c1x1 + c2(x2) + ȳ s −D∗(−s)

s = b − A1x1 − A2x2

x1 ∈ conv(B) , x2 ∈ X 2

(ΠB,ȳ ,D) max

c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2) + ȳ s −D∗(−s)

s = b − A1

(∑
x̄1∈B x̄1θx̄1

)
− A2x2∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g

Barring some details (do not translate f 1
B), everything works

Performances can improve dramatically (not hard to see why)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 31 / 65

A Glimpse to Computational Results
Cplex DE FA-2 FA-V

primal dual net. barr. 1e-6 1e-12 time f add it gap time f add it gap

12 10 11 15 32 64 410 12 7 14880 9e-7 3 0.6 0.5 875 9e-3
64 53 61 71 48 51 1855 19 16 11141 3e-6 6 1.2 1.2 842 2e-2

139 114 132 157 29 29 1254 32 20 9035 1e-6 12 2.3 2.2 796 3e-2
559 456 531 587 65 66 1732 100 67 12940 1e-6 26 5.1 5.0 760 4e-2

46 39 43 60 26 32 322 12 10 10320 1e-6 6 0.9 1.1 871 8e-3
147 132 144 209 28 56 294 15 9 5300 1e-6 12 2.1 2.4 831 9e-3
509 301 478 648 21 26 5033 169 155 27231 1e-6 26 4.5 5.4 794 3e-3

2329 1930 2302 2590 133 133 3122 192 169 14547 1e-6 51 8.6 10.6 760 4e-2

196 131 156 304 2 3 344 20 12 7169 1e-6 12 2.0 2.3 827 3e-3
926 708 862 1174 246 337 2256 111 118 17034 2e-5 29 5.0 6.1 869 1e-2

2706 2167 2542 3272 284 508 5475 192 249 15061 3e-6 58 9.2 13.0 817 2e-2
11156 8908 11675 11683 242 253 11863 349 413 13953 1e-6 109 16.7 24.1 765 2e-2

Fa-V = subgradient, FA-2 = aggregated, ad-hoc (∆B,ȳ ,t) solver[58]

Tuning not easy, a lot of pieces have to click[57]

Much faster than Cplex and anything else as |A| and/or |K | grows

[58] F. “Solving Semidefinite Quadratic Problems Within Nonsmooth Optimization Algorithms” Comput. & O.R., 1996

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 32 / 65

The Easy Component Need Not Be Linear

Nonlinear multicommodity routing:

min
{ ∑

(i , j)∈A
zij

1−zij : 〈multicommodity flow〉 , z ∈ [0, 1]|A|
}

with classical (convex) Kleinrock delay function

Decomposes into |K | flows + |A| simple convex subproblems

Specialized models of |A| convex functions using the conjugate

Specialized treatment of these “easy” C 2 functions with

Newton model instead of the cutting-plane model[59]

Substantially improved performances

[59] Lemaréchal, Ororou, Petrou “A Bundle-type Algorithm for Routing in Telecommunication Data Networks” COAP, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 33 / 65

Structured Decomposition

The Structured Dantzig-Wolfe Idea

Assumption 1: Alternative Formulation of “easy” set

conv(X) =
{
x = Cθ : Γθ ≤ γ

}

Assumption 2: padding with zeroes

ΓBθ̄B ≤ γB ⇒ Γ
[
θ̄B , 0

]
≤ γ

⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X)

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ conv(X), x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

Structured master problem

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(3)

≡ structured model

fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB } (4)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 34 / 65

The Structured Dantzig-Wolfe Idea

Assumption 1: Alternative Formulation of “easy” set

conv(X) =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: padding with zeroes

ΓBθ̄B ≤ γB ⇒ Γ
[
θ̄B , 0

]
≤ γ

⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X)

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ conv(X), x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

Structured master problem

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(3)

≡ structured model

fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB } (4)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 34 / 65

The Structured Dantzig-Wolfe Idea

Assumption 1: Alternative Formulation of “easy” set

conv(X) =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: padding with zeroes

ΓBθ̄B ≤ γB ⇒ Γ
[
θ̄B , 0

]
≤ γ

⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X)

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ conv(X), x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

Structured master problem

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(3)

≡ structured model

fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB } (4)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 34 / 65

The Structured Dantzig-Wolfe Idea

Assumption 1: Alternative Formulation of “easy” set

conv(X) =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2: padding with zeroes

ΓBθ̄B ≤ γB ⇒ Γ
[
θ̄B , 0

]
≤ γ

⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X)

Assumption 3: easy update of rows and columns

Given B, x̄ ∈ conv(X), x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

Structured master problem

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(3)

≡ structured model

fB(y) = max{ (c − yA)x + xb : x = CBθB , ΓBθB ≤ γB } (4)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 34 / 65

The Structured Dantzig-Wolfe Algorithm

〈 initialize B 〉;
repeat

〈 solve (ΠB) for x∗, y∗ (duals of Ax = b); v∗ = cx∗ 〉;
x̄ = argmin { (c − y∗A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until v∗ < cx̄ + y∗(b − Ax̄)

Easy[60] to prove that:

finitely terminates with an optimal solution of (Π)

. . . even if (proper) removal from B is allowed (when cx∗ increases)

. . . even if X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger

[60] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” DAM, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 35 / 65

The Structured Dantzig-Wolfe Algorithm

〈 initialize B 〉;
repeat

〈 solve (ΠB) for x∗, y∗ (duals of Ax = b); v∗ = cx∗ 〉;
x̄ = argmin { (c − y∗A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until v∗ < cx̄ + y∗(b − Ax̄)

Easy[60] to prove that:

finitely terminates with an optimal solution of (Π)

. . . even if (proper) removal from B is allowed (when cx∗ increases)

. . . even if X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger

[60] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” DAM, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 35 / 65

The Structured Dantzig-Wolfe Algorithm

〈 initialize B 〉;
repeat

〈 solve (ΠB) for x∗, y∗ (duals of Ax = b); v∗ = cx∗ 〉;
x̄ = argmin { (c − y∗A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until v∗ < cx̄ + y∗(b − Ax̄)

Easy[60] to prove that:

finitely terminates with an optimal solution of (Π)

. . . even if (proper) removal from B is allowed (when cx∗ increases)

. . . even if X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger

[60] F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” DAM, 2009

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 35 / 65

Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

(∆B,ȳ ,D) min
{
fB(ȳ + d) +D(d)

}
except fB is a different model of f (not the cutting plane one)

Even simpler from the primal viewpoint:

max
{
cx + ȳ s −D∗(−s) : s = b − Ax , x = CBθB , ΓBθB ≤ γB

}
With proper choice of D, still a Linear Program; e.g.

max . . .− (∆− + Γ−)s ′′− −∆−s ′− −∆+s ′+ − (∆+ + Γ+)s ′′+
s ′′− + s ′− − s ′+ − s ′′+ = b − Ax , . . .

s ′′+ ≥ 0 , ε+ ≥ s ′+ ≥ 0 , ε− ≥ s ′− ≥ 0 , s ′′− ≥ 0

dual optimal variables of “s = b − Ax” still give d∗, . . .

Move ȳ , handle t, handle B: as in [37] (or simpler, B is finite)

Even better computational results in the right application[61]

[61] F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 36 / 65

Incremental, Inexact,
Asynchronous

Incremental Computation of Subproblems

(Partial) aggregation can contribute to reducing master problem cost

but subproblem cost remains the same

Subproblem cost high if |K | large and/or subproblems hard,

trade-off very application-dependent (you get to meet all sorts)

Clearly interesting to avoid “unnecessary” subproblems computations

In fact quite easy to understand early on if f (ȳ + d∗) 6� f (ȳ)

“null steps” can be declared without computing all subproblems[62]

Early declaring “serious steps” harder, but possible[56]

provided you can estimate the Lipchitz constant (nontrivial)

Trade-off still all to explore.

[62] Gaudioso, Giallombardo, Miglionico “On Solving the Lagrangian Dual [. . .] via an Incremental Approach” COAP, 2007

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 37 / 65

Inexact Computation of Subproblems

Turns out incremental special case of inexact:

f (ȳ + d∗) only approximately computed

Powerful general theory well-understood for proximal[63] and level[64]

May require “noise reduction steps”: t/l changed without oracle calls

(exploit stabilization to sample the space, like “curved search”[65])

Different noise reductions depending on oracle “unfaithfulness”[56]

Explicitly provide upper/lower bounds and accuracy to oracle[56]

Can significantly improve total running time, but:

details depend on stabilization employed

trade-off with number of iterations nontrivial

[63] de Oliveira, Sagastizábal, C. Lemaréchal “Convex Proximal Bundle Methods [. . .] for Inexact Oracles” Math. Prog., 2014

[64] de Oliveira, Sagastizábal “Level Bundle Methods for Oracles With On-Demand Accuracy” OM&S, 2014

[65] Schramm, Zowe.“A Version of the Bundle Idea for Minimizing a Nonsmooth Function [. . .] SIOPT, 1992

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 38 / 65

Asynchronous Computation of Subproblems

Clear avenue to reduce wall-clock time: parallelize subproblems

Master-slave version “obvious”[38], popular for stochastic programs[66]

Runs afoul of Amdahl’s Law: speedup limited by master problem cost

and large master problems is what works best (most often)

May use specialised algorithms[58] and hardware[6], but issue remains

Completely asynchronous versions possible[67]

Still to be completed (proximal? multiple masters?),

general efficient implementations highly nontrivial

Interesting variants for “loosely coupled subproblems”[68]

[66] Lubin, Martin, Petra, Sandıkçı “On Parallelizing Dual Decomposition in Stochastic Integer Programming” O.R. Lett., 2013

[67] Iutzeler, Malick, de Oliveira “Asynchronous Level Bundle Methods” Math. Prog., 2020

[68] Fischer, Helmberg “A Parallel Bundle Framework for Asynchronous Subspace Optimisation [. . .]” SIOPT, 2014

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 39 / 65

Part IV:
A Useful Companion on the Road

Decomposition in Practice

Decomposition is complex, but so is any Branch-and-X

Need general-purpose efficient decomposition software:

Cplex does Benders’, structure automatic or user hints

SCIP[30] does B&C&P (one-level D-W), pricing & reformulation up to
the user (plugins)

GCG[30] extends SCIP with automatic and user-defined (one-level) D-W
and recently also a generic (one-level) Benders’ approach[69]

D-W approaches for two-stage stochastic programs are implemented in
DDSIP[70] and PIPS[71], the latter interfaced with StructJuMP[72]

The BaPCoD B&C&P code has been used to develop Coluna.jl[73],
doing one-level D-W and (alpha) Benders’, multi-level planned

4 years ago there was no multi-level, nor C++, so we started one

[69] Maher “Implementing the Branch-and-Cut approach for a general purpose Benders’ decomposition framework” EJOR, 2021

[70] https://github.com/RalfGollmer/ddsip

[71] https://github.com/Argonne-National-Laboratory/PIPS

[72] https://github.com/StructJuMP/StructJuMP.jl

[73] https://github.com/atoptima/Coluna.jl

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 40 / 65

https://github.com/RalfGollmer/ddsip
https://github.com/Argonne-National-Laboratory/PIPS
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/Coluna.jl

https://gitlab.com/smspp/smspp-project

Open source (LGPL3), public as of yesterday!

https://gitlab.com/smspp/smspp-project

What SMS++ is

A core set of C++-17 classes implementing a modelling system that:

explicitly supports the notion of Block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised Solver on Block with specific structure

manages any dynamic change in the Block

beyond “just” generation of constraints/variables

supports reformulation/restriction/relaxation of Block

has built-in parallel processing capabilities

should be able to deal with almost anything (bilevel, PDE, . . .)

An hopefully growing set of specialized Block and Solver

In perspective an ecosystem fostering collaboration and code sharing

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 41 / 65

What SMS++ is not

An algebraic modelling language: Block / Solver are C++ code

(although it provides some modelling-language-like functionalities)

For the faint of heart: primarily written for algorithmic experts

(although users may benefit from having many pre-defined Block)

Stable: only version 0.4, lots of further development ahead,

significant changes in interfaces not ruled out, actually expected

(although current Block / Solver very thoroughly tested)

Interfaced with many solvers: only Cplex, SCIP, MCFClass, StOpt

(although the list should hopefully grow)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 42 / 65

A Crude Schematic

Objective

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 43 / 65

Block

Block = abstract class representing the general concept of
“a (part of a) mathematical model with a well-understood identity”

Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

Physical representation of a Block: whatever data structure is
required to describe the instance (e.g., G , b, c , u)

Possibly alternative abstract representation(s) of a Block:
one Objective (but possibly vector-valued)

any # of groups of (static) Variable

any # of groups of std::list of (dynamic) Variable

any # of groups of (static) Constraint

any # of groups of std::list of (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock has k Block::MCFBlock inside)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 44 / 65

Variable

Abstract concept, thought to be extended (a matrix, a function, . . .)

Does not even have a value

Knows which Block it belongs to

Can be fixed and unfixed to/from its current value (whatever that is)

Influences a set of Constraint/Objective/Function
(actually, a set of ThinVarDepInterface)

Fundamental design decision: “name” of a Variable = its memory
address =⇒ copying a Variable makes a different Variable =⇒
dynamic Variables always live in std::lists

VariableModification:Modification (fix/unfix)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 45 / 65

Constraint

Abstract concept, thought to be extended (any algebraic constraint, a
matrix constraint, a PDE constraint, bilevel program, . . .)

Depends from a set of Variable (:ThinVarDepInterface)

Either satisfied or not by the current value of the Variable,

checking it possibly costly (:ThinComputeInterface)

Knows which Block it belongs to

Can be relaxed and enforced

Fundamental design decision: “name” of a Constraint = its
memory address =⇒ copying a Constraint makes a different
Constraint =⇒ dynamic Constraints always live in std::lists

ConstraintModification:Modification (relax/enforce)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 46 / 65

Objective

Abstract concept, does not specify its return value (vector, set, . . .)

Either minimized or maximized

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

RealObjective:Objective implements “value is an extended real”

Knows which Block it belongs to

Same fundamental design decision . . .
(but there is no such thing as a dynamic Objective)

ObjectiveModification:Modification (change verse)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 47 / 65

Function

Real-valued Function

Depends from a set of Variable (:ThinVarDepInterface)

Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

Approximate computation supported in a quite general way[56]

(since :ThinComputeInterface, and that does)

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variable)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 48 / 65

C05Function and C15Function

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

General concept of “linearization” (gradient, convex/concave
subgradient, Clarke subgradient, . . .)

Multiple linearizations produced at each evaluation (local pool)

Global pool of linearizations for reoptimization:

convex combination of linearizations

“important linearization” (at optimality)

C05FunctionModification[Variables/LinearizationShift] for
“easy” changes =⇒ reoptimization (linearizations shift, some
linearizations entries changing in simple ways)

C15Function supports (partial) Hessians

Arbitrary hierarchy of :Function possible/envisioned,
any one that makes sense for application and/or solution method

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 49 / 65

Closer to the ground

ColVariable:Variable: “value = one single real” (possibly ∈ Z)

RowConstraint:Constraint: “l ≤ a real ≤ u” =⇒
has dual variable (single real) attached to it

OneVarConstraint:RowConstraint: “a real” =

a single ColVariable ≡ bound constraints

FRowConstraint:RowConstraint: “a real” given by a Function

FRealObjective:RealObjective: “value” given by a Function

LinearFunction:Function: a linear form in ColVariable

DQuadFunction:Function: a separable quadratic form

Many things missing (AlgebraicFunction, DenseLinearFunction,
Matrix/VectorVariable, . . .)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 50 / 65

Block and Solver

Any # of Solver attached to a Block to solve it

:Solver for a specific :Block can use the physical representation
=⇒ no need for explicit Constraint
=⇒ abstract representation of Block only constructed on demand

However, Variable are always present to interface with Solver

(this may change thanks to methods factory)

A general-purpose Solver uses the abstract representation

Dynamic Variable/Constraint can be generated on demand
(user cuts/lazy constraints/column generation)

For a Solver attached to a Block:

Variable not belonging to the Block are constants

Constraint not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

Objective of sub-Blocks summed to that of father Block if has
same verse, otherwise min/max

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 51 / 65

Solver

Solver = interface between a Block and algorithms solving it

Each Solver attached to a single Block, from which it picks all the
data, but any # of Solver can be attached to the same Block

Solutions are written directly into the Variable of the Block

Individual Solver can be attached to sub-Block of a Block

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modification

Slanted towards RealObjective (≈optimality = up/low bounds)

CDASolver:Solver is “Convex Duality Aware”: bounds are
associated to dual solutions (possibly, multiple)

Provides general events mechanism (ThinComputeInterface does)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 52 / 65

Block and Modification

Most Block components can change, but not all:
set of sub-Block

and shape of groups of Variable/Constraint

Any change is communicated to each interested Solver (attached to
the Block or any of its ancestor) via a Modification object

anyone there() ≡ ∃ interested Solver (Modification needed)

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

Abstract Modification used to keep both representations in sync
=⇒ a single change may trigger more than one Modification

=⇒ concerns Block() mechanism to avoid this to repeat
=⇒ parameter in changing methods to avoid useless Modification

Specialized Solver disregard abstract Modification and vice-versa

A Block may refuse to support some changes (explicitly declaring it)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 53 / 65

Modification

Almost empty base class, then everything has its own derived ones

Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraint)

Each Solver has the responsibility of cleaning up its list of
Modification (smart pointers → memory eventually released)

Solver supposedly reoptimize to improve efficiency, which is easier if
you can see all list of changes at once (lazy update)

GroupModification to (recursively) pack many Modification

together =⇒ different “channels” in Block

Modification processed in the arrival order to ensure consistency

A Solver may optimize the changes (Modifications may cancel
each outer out . . .), but its responsibility

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 54 / 65

Support to (coarse-grained) Parallel Computation

Block can be (r/w) lock()-ed and read lock()-ed

lock()-ing a Block automatically lock()s all inner Block

lock() (but not read lock()) sets an owner and records its
std::thread::id; other lock() from the same thread fail
(std::mutex would not work there)

Similar mechanism for read lock(), any # of concurrent reads

Write starvation not handled yet

A Solver can be “lent an ID” (solving an inner Block)

The list of Modification of Solver is under an “active guard”
(std::atomic)

Distributed computation under development, can exploit general
serialize/deserialize Block capabilities, Cray/HPE “Fugu” framework

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 55 / 65

Solution

Block produces Solution object, possibly using its sub-Blocks’

Solution can read() its own Block and write() itself back

Solution is Block-specific rather than Solver-specific

Solution may save dual information

Solution may save only a specific subset of primal/dual information

Linear combination of Solution supported =⇒ “less general”

Solution may (automatically) convert in “more general” ones

Like Block, Solution are tree-structured complex objects

ColVariableSolution:Solution uses the abstract representation
of any Block that only have (std::vector or boost::multi array

of) (std::list of) ColVariables to read/write the solution

RowConstraintSolution:Solution same for dual information
(RowConstraint), ColRowSolution for both

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 56 / 65

Configuration

Block a tree-structured complex object =⇒
Configuration for them a (possibly) tree-structured complex object

But also SimpleConfiguration<T>:Configuration

(T an int, a double, a std::pair<>, . . .)

[C/O/R]BlockConfiguration:Configuration set [recursively]:

which dynamic Variable/Constraint are generated, how
(Solver, time limit, parameters . . .)

which Solution is produced (what is saved)

the ComputeConfiguration:Configuration of any
Constraint/Objective that needs one

a bunch of other Block parameters

[R]BlockSolverConfiguration:Configuration set [recursively]
which Solver are attached to the Block and their
ComputeConfiguration:Configuration

Can be clear()-ed for cleanup

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 57 / 65

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone) should always work

Available R3Blocks :Block-specific, a :Configuration needed

R3Block completely independent (new Variable/Constraint),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

map forward solution() and map back Modification() useful,
e.g., dynamic generation of Variable/Constraint in the R3Block

:Block is in charge of all this, thus decides what it supports

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 58 / 65

A lot of other support stuff

All tree-structured complex objects (Block, Configuration, . . .)
and Solver have an (almost) automatic factory

All tree-structured complex objects (. . .) have methods to
serialize/deserialize themselves to netCDF files

A methods factory for changing the physical representation without
knowing of which :Block it exactly is (standardised interface)

AbstractBlock for constructing a model a-la algebraic language, can
be derived for “general Block + specific part”

PolyhedralFunction[Block], very useful for decomposition

AbstractPath for indexing any Constranit/Variable in a Block

FakeSolver:Solver stashes away all Modification,
UpdateSolver:Solver immediately forwards/R3Bs them

. . .

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 59 / 65

Main Existing :Block

MCFBlock/MMCFBlock: single/multicommodity flow (p.o.c.)

UCBlock for UC, abstract UnitBlock with several concrete
(ThermalUnitBlock, HydroUnitBlock, . . .), abstract
NetworkBlock with a few concrete (DCNetworkBlock)

LagBFunction:{C05Function,Block} transforms any Block (with
appropriate Objective) into its dual function

BendersBFunction:{C05Function,Block} transforms any Block

(with appropriate Constraint) into its value function

StochasticBlock implements realizations of scenarios into any
Block (using methods factory)

SDDPBlock represents multi-stage stochastic programs suitable for
Stochastic Dual Dynamic Programming

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 60 / 65

Main “Basic” :Solver

MCFSolver: templated p.o.c. wrapper to MCFClass[74] for MCFBlock

DPSolver for ThermalUnitBlock[12] (still needs serious work)

MILPSolver: constructs matrix-based representation of any “LP”
Block: ColVariable, FRowConstraint, FRealObjective with
LinearFunction or DQuadFunction

CPXMILPSolver:MILPSolver and SCIPMILPSolver:MILPSolver

wrappers for Cplex and SCIP (to be improved)

BundleSolver:CDASolver: SMS++-native version of[75] (still shares
some code, dependency to be removed), optimizes any (sum of)
C05Function, most (not all) state-of-the-art tricks

SDDPSolver: wrapper for SDDP solver StOpt[76] using
StochasticBlock, BendersBFunction and PolyhedralFunction

SDDPGreedySolver: greedy forward simulator for SDDPBlock

[74] https://github.com/frangio68/Min-Cost-Flow-Class

[75] https://gitlab.com/frangio68/ndosolver_fioracle_project

[76] https://gitlab.com/stochastic-control/StOpt

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 61 / 65

https://github.com/frangio68/Min-Cost-Flow-Class
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://gitlab.com/stochastic-control/StOpt

Our Masterpiece: LagrangianDualSolver

Works for any Block with natural block-diagonal structure: no
Objective or Variable, all Constraint linking the inner Block

Using LagBFunction stealthily constructs the Lagrangian Dual
w.r.t. linking Constraint, R3B-ing or “stealing” the inner Block

Solves the Lagrangian Dual with appropriate CDASolver (e.g., but
not necessarily, BundleSolver), provides dual and “convexified”
solution in original Block

Can attach LagrangianDualSolver and (say) :MILPSolver to
same Block, solve in parallel!

Weeks of work in days/hours (if Block of the right form already)

Hopefully soon BendersDecompositionSolver (crucial component
BendersBFunction existing and tested)

Multilevel nested parallel heterogeneous decomposition by design
(but I’ll believe it when I’ll see it running)

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 62 / 65

The many things that we do not have (yet)

A relaxation-agnostic Branch-and-X Solver (could recycle OOBB)

Many other forms of Variable (Vector/MatrixVariable,
FunctionVariable, . . .), Constraint (AlgebraicFunction,
BilevelConstraint, EquilibriumConstraint, PDEConstraint,
. . .) and/or Objective (RealVectorObjective, . . .)

Interfaces with many other solvers (OSISolverInterface, Couenne,
OR-tools CP-SAT Solver, . . .)

Many many more :Block and their specialised :Solver

Achieving critical mass crucial, decomposition not the only objective:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[77]

[77] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 63 / 65

The many things that we do not have (yet)

A relaxation-agnostic Branch-and-X Solver (could recycle OOBB)

Many other forms of Variable (Vector/MatrixVariable,
FunctionVariable, . . .), Constraint (AlgebraicFunction,
BilevelConstraint, EquilibriumConstraint, PDEConstraint,
. . .) and/or Objective (RealVectorObjective, . . .)

Interfaces with many other solvers (OSISolverInterface, Couenne,
OR-tools CP-SAT Solver, . . .)

Many many more :Block and their specialised :Solver

Achieving critical mass crucial, decomposition not the only objective:

improve collaboration and code reuse, reduce huge code waste
(I ♥ coding, breaks my ♥)

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[77]

[77] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 63 / 65

Conclusions
(for good, this time)

Conclusions and (a lot of) future work

Decomposition methods (D-W, Benders’) old ideas, well-understood,
but by-the-book decomposition often not effective enough

Many nontrivial ideas to improve on the standard approaches

Reduce iterations count: “large” master problems to quickly get the
“combinatorial tail” =⇒

large master problem time go against Amdhal’s Law

“unstructured” master problems =⇒ can’t use “easy” specialised
methods[58] (but there may be ways[78], some structure is there)

Reduce subproblems cost: incremental/inexact/asynchronous solution
+ all possible reoptimization

In all cases, complex multilevel parallel implementation

Some support slowly starting to show up

SMS++ aiming for a slice of this cake (not a lie), and more

Lots of fun to be had, all contributions welcome

[78] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 64 / 65

Conclusions and (a lot of) future work

Decomposition methods (D-W, Benders’) old ideas, well-understood,
but by-the-book decomposition often not effective enough

Many nontrivial ideas to improve on the standard approaches

Reduce iterations count: “large” master problems to quickly get the
“combinatorial tail” =⇒

large master problem time go against Amdhal’s Law

“unstructured” master problems =⇒ can’t use “easy” specialised
methods[58] (but there may be ways[78], some structure is there)

Reduce subproblems cost: incremental/inexact/asynchronous solution
+ all possible reoptimization

In all cases, complex multilevel parallel implementation

Some support slowly starting to show up

SMS++ aiming for a slice of this cake (not a lie), and more

Lots of fun to be had, all contributions welcome

[78] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 64 / 65

Conclusions and (a lot of) future work

Decomposition methods (D-W, Benders’) old ideas, well-understood,
but by-the-book decomposition often not effective enough

Many nontrivial ideas to improve on the standard approaches

Reduce iterations count: “large” master problems to quickly get the
“combinatorial tail” =⇒

large master problem time go against Amdhal’s Law

“unstructured” master problems =⇒ can’t use “easy” specialised
methods[58] (but there may be ways[78], some structure is there)

Reduce subproblems cost: incremental/inexact/asynchronous solution
+ all possible reoptimization

In all cases, complex multilevel parallel implementation

Some support slowly starting to show up

SMS++ aiming for a slice of this cake

(not a lie), and more

Lots of fun to be had, all contributions welcome

[78] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 64 / 65

Conclusions and (a lot of) future work

Decomposition methods (D-W, Benders’) old ideas, well-understood,
but by-the-book decomposition often not effective enough

Many nontrivial ideas to improve on the standard approaches

Reduce iterations count: “large” master problems to quickly get the
“combinatorial tail” =⇒

large master problem time go against Amdhal’s Law

“unstructured” master problems =⇒ can’t use “easy” specialised
methods[58] (but there may be ways[78], some structure is there)

Reduce subproblems cost: incremental/inexact/asynchronous solution
+ all possible reoptimization

In all cases, complex multilevel parallel implementation

Some support slowly starting to show up

SMS++ aiming for a slice of this cake (not a lie), and more

Lots of fun to be had, all contributions welcome

[78] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 64 / 65

Conclusions and (a lot of) future work

Decomposition methods (D-W, Benders’) old ideas, well-understood,
but by-the-book decomposition often not effective enough

Many nontrivial ideas to improve on the standard approaches

Reduce iterations count: “large” master problems to quickly get the
“combinatorial tail” =⇒

large master problem time go against Amdhal’s Law

“unstructured” master problems =⇒ can’t use “easy” specialised
methods[58] (but there may be ways[78], some structure is there)

Reduce subproblems cost: incremental/inexact/asynchronous solution
+ all possible reoptimization

In all cases, complex multilevel parallel implementation

Some support slowly starting to show up

SMS++ aiming for a slice of this cake (not a lie), and more

Lots of fun to be had, all contributions welcome

[78] Kiwiel “An alternating linearization bundle method for . . . and nonlinear multicommodity flow problems” Math. Prog., 2013

A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 64 / 65

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

Copyright © Università di Pisa 2021, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the PLAN4RES Consortium. In

addition, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for

any use that may be made of the information it contains.
A. Frangioni (DI — UniPi) Practical Decomposition Methods III&IV “Napoli” 2021 65 / 65

	Stabilization
	Dual-Optimal Cuts
	Cuts Selection
	Disaggregated Model
	Easy Components
	Structured Decomposition
	Incremental, Inexact, Asynchronous
	A Useful Companion on the Road
	Conclusions (for good)

