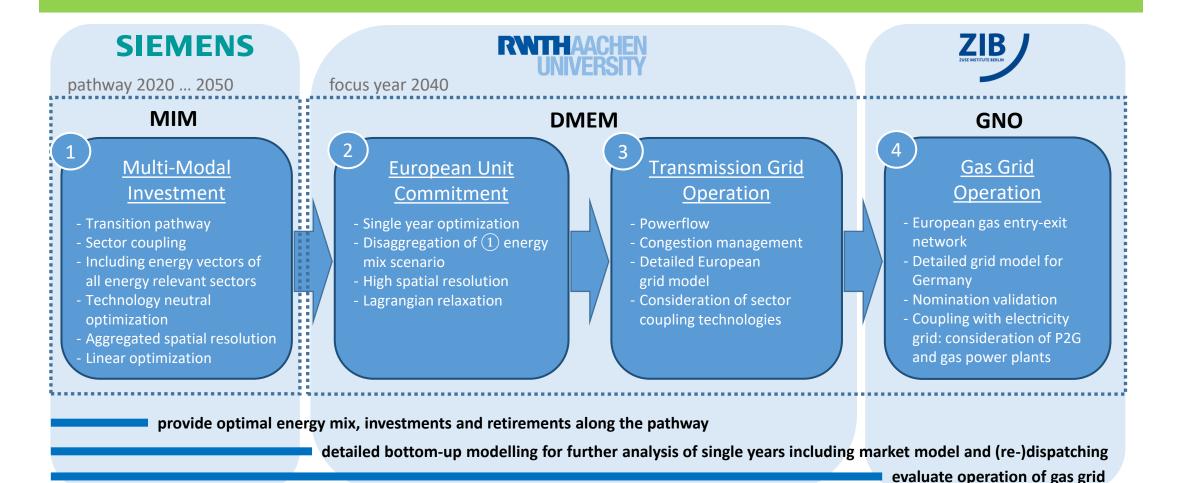


Case Study 1: Multi-modal pan-European energy concepts for achieving CO₂ emission reduction goals with perfect foresight, considering sector coupling of electricity, heating and cooling, mobility, and fuels / gas, and coupling to gas grids

by D. Most, L. Wyrwoll, I. Yueksel-Erguen, 20 May '21

Join at **slido.com** #472 686



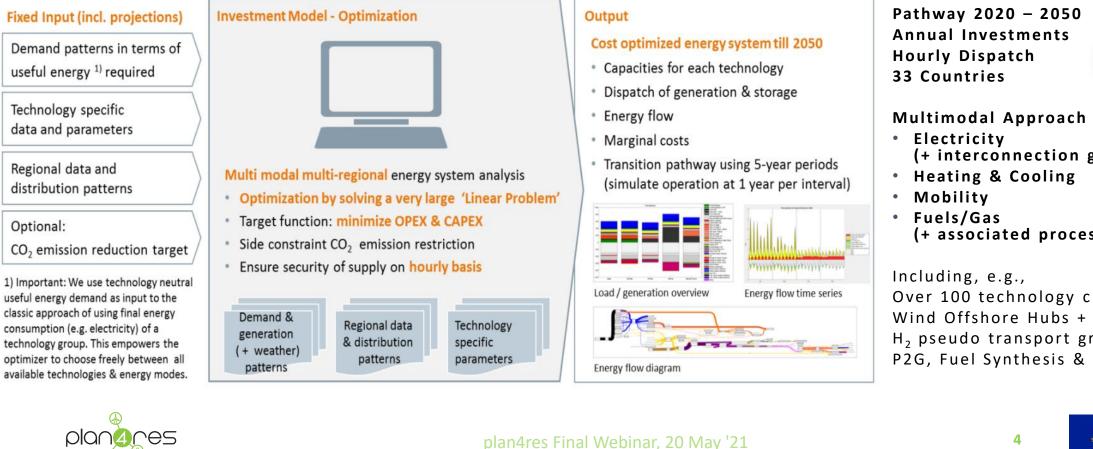
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773897

Demonstration of the Workflow from Investment Pathway to Market Model to Electric and Gas Grid Analysis

Multimodal Investment Model (MIM) representing the integrated pan-European energy system

"What will the optimal future energy mix look like? How can we reach that goal with a cost-effective investment pathway? What impact has sector coupling on the future generation fleet, e.g., the potential role of emerging technologies like power-to-heat, eMobility and power-to-gas?"

- Multimodal investment model (MIM): in nutshell
- Overview Scenarios modelled + exemplary detailed results
- Key results of the study



An integrated multimodal optimization approach enables consideration of sector coupling, including demands from multiple energy vectors and cross-sector flexibility from implemented technologies

Multimodal Investment and Operation Model (MIM) of the integrated pan-European Energy System – Pathway Optimization

Multimodal Approach / Sectors:

- (+ interconnection grid)
- (+ associated processes)

Over 100 technology classes Wind Offshore Hubs + connection H, pseudo transport grid P2G, Fuel Synthesis & Refinery

Over 100 technology classes are implemented in the MIM model building a meshed representation of the Pan European Energy System

El. Generation - Utility & Industry

- Steam PP Coal/Gas/Oil/Lignite
- Gas Turbine SCPP Oil / Gas / H₂
- Combined Cycle CCPP Gas / H₂
- Nuclear PP
- CHP Engine or Fuel Cell (large)
- Hydro Run-of-River
- Hydro Lake w/ reservoir
- Solar PV (large farms)
- Wind Onshore
- Wind Offshore
- Biomass PP / Biogas CHP
- MSW PP (exergetic utilization)
- MSW incineration (w/o energy gen)
- Solar thermal (large)

El. Generation - decentral

- Rooftop PV (small, roof-top)
- Micro CHP (Gas, Biogas)
- · Micro CHP w/ Fuel cells (e.g. SOFC)

Electricity Transport Grids

- Interconnections (NTC, cross-border)
- North & Baltic Sea Hubs (NTC Links)

Simplified Electricity Transport Grids

- Transmission (per region, simplified)
- Distribution (per region, simplified)

Mobility

- · Classic Mobility (Rail / Ship / Air)
- Classic Cars / Public Bus / Coaches
- Classic Trucks light / heavy / long distance
- Fuel Cell Electric Cars / Trucks / Rail / Bus
- E-Mobility
 - eCar, eBus, eCoach
 - eTruck light / heavy / LD catenary hybrids

Mobility Demands

- Passenger in p*km Road / Air / Ship / Rail
- Freight in t*km Road / Air / Ship / Rail

Heating/Cooling - temperature levels

- LT <100 °C
 MT 100°C ... 150°C
- HT 150°C .. 500°C
- VHT >500°C
- Cooling 0° .. 15 °C
- Freezing <0°C

Cooling - central / decentral

- Compression Chiller Cooling / Freezing
- Compression Chiller HVAC
- Absorption Chiller 1 & 2 stage (large)

Simplified Cooling Grid

• District Cooling (per region, simplified)

Heating - decentral

- Small Boiler Gas/ Oil / Coal / Biomass
- Small Electric Rods
- Micro CHP Engine Gas / Biogas
- Micro CHP Fuel Cell Gas / H₂
- · Heat Pumps small (Air / Water)
- District Heating LT
- Solar Thermal (roof-top size)

Heating / Cooling Efficiency Optimization

- Building Insulation (save heating)
- · Building Energy management (save cooling)

Heating - central

- Furnace VHT Gas/ Oil / Coal / Biomass / H₂
- Large Boiler Gas/ Oil / Coal / Biomass / H₂
- Arc Furnace (electric) VHT
- Heating rod (electric) LT / MT / HT
- Heat Pump (LT / MT)
- (Deep) Geothermal Heat
- District Heating MT
- Solar Thermal (large)

Simplified Heating Grid

• District Heating (per region, simplified)

Heating & Cooling Demands

Central exogenous / industry Decentral exogenous / residential

Gas/Fuel Conversion

- Electrolysis (H₂)
- P2Gas w/ CO₂ capture (syn. CH₄)
- P2X w/ CO₂ capture (syn. Liq. Fuel, CH₃OH)

pland res

- SMR, Coke Oven (Syngas)
- NH₃ simplified synthesis classic / e-based CH₃OH simplified synthesis classic / e-based
- Liquid fuel from Refineries incl. H₂ demand
- H₂ Liquefaction

Industry Demand correlated to Fuel/Gas

- Chemical Industry H₂ Demand
- NH₃ CH₃OH Demand Industry
- MSW incineration

Gas Transport Grids

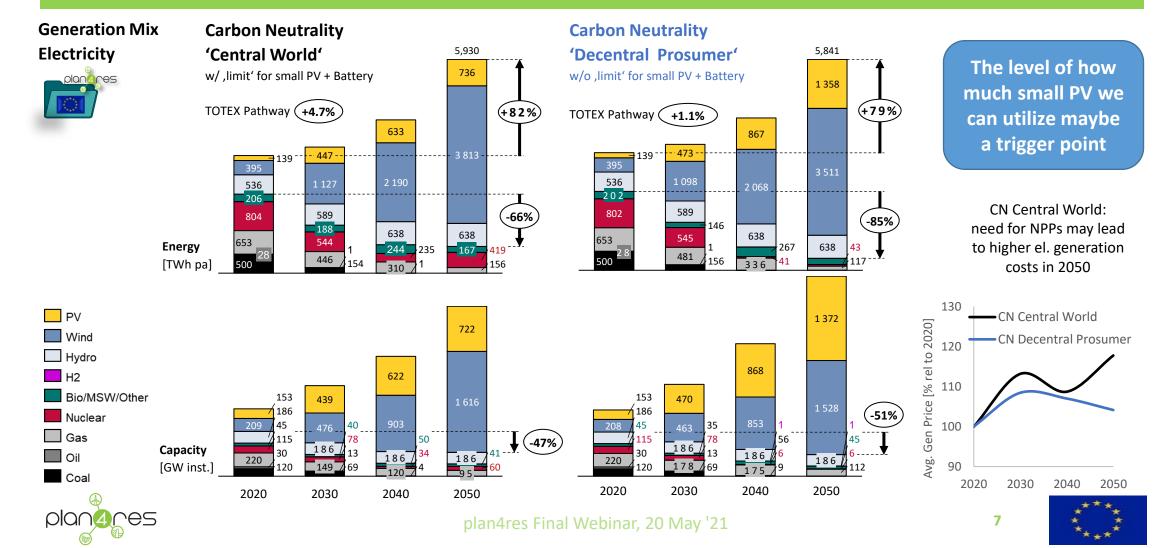
- H₂ Pseudo Grid (NTC, cross-border) Simplified Gas Transport Grids
- Mix Gas / H₂ (per region, simplified)

Storages

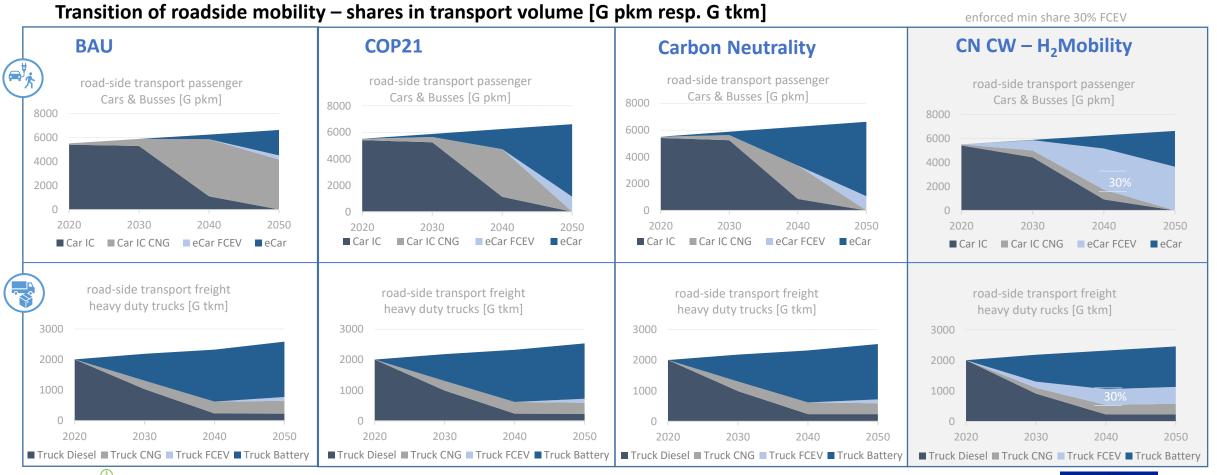
- Pumped Hydro (pure / mixed)
- Batteries (large, decentral)

5

- Home Batterie for Rooftop PV
- Heat Storage HT / MT / LT (small, large)
- Cold Storage H₂O, Ice (small, large)
- NG Storage unlimited in pipeline & cavern
- H₂ Storage in Cavern / Tanks & Vessels


Scenarios analyzed using the MIM approach Finding: The utilization of small PV triggers two manifestations, a world dominated by either central units or by small decentral prosumers

(A)

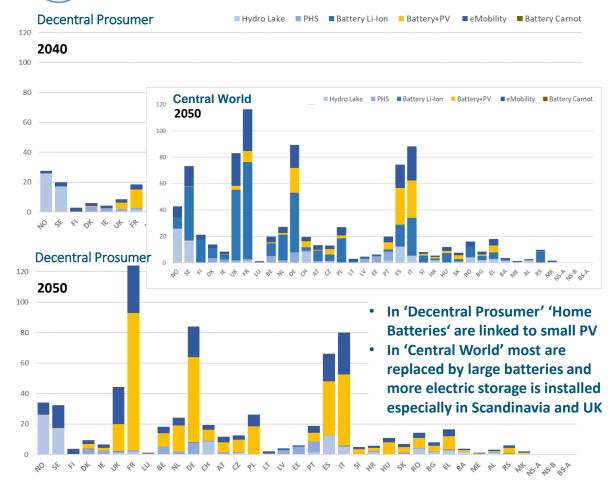

Add. TOTEX Scenarios

BAU +0.0%	 O) Business as Usual → -60% CO₂ emissions simply from refurbishments and trends in technologies & costs COP21 Reduction Targets (-90% @ 2050 -55% @ 2030) w/ Central World assumption → feasible within projected ETS scheme 25, 33, 55, 90 €/t_{CO2}
	Carbon Neutrality (-98% @ 2050 -55% @ 2030): Limit for rooftop PV → feasible within projected ETS scheme 25, 33, 55, 90 €/t _{co2} and at moderate costs Cimit for rooftop PV
	Level of utilization of small PV potential as trigger point to the electric system:
+4.7%	 2) Central World (CW) w/ limit of small PV potential → reduction of Gas PP, NPPs to ¹/₃ → an energy system dominated by large units and central storages
+1.1%	 3) Decentral Prosumer (DP) w/o limit for small PV potential 180% of limit as stated by ^a) → small PV x2, no NPP, Gas PP as reserve only → lots of small decentral prosumers, e.g. rooftop PV + Battery, but reduced base of large units
+1.5%	 4) CN DP "National Supply" with limited cross-border grid extension (TYNDP BE2027 & today's electricity exchange → cross-border exchange ensures security of supply → further limitation: model is infeasible
+16%	 5) CN CW "H₂ Mobility" - enforced 'Min 30% FCEV in Road Traffic policy' → disruption in passenger road traffic (resulting ~70% FCEV cars in 2050), but not in freight transport
	a) Basing on data from (Bódis, Kougias, Jäger-Waldau, Taylor, & Szabó, 2019) a conservative potential of roof-top PV is estimated to ~740 TWh pa plan4res Final Webinar, 20 May '21 6

A massive installations of small PV + home battery promotes residential self supply enabling Carbon Neutrality at a lower costs, but without NPPs and with large gas power plants only as reserve

With increasing carbon reduction targets the trend to eMobility gets more robust; enforced min shares in H_2 Mobility can trigger a disruption in passenger transport, but at much higher costs

8


plan4res Final Webinar, 20 May '21

Regional developments of storages support the implementation of RES, mainly electric batteries, only from 2050 on some Power-To-Gas

Regional Development Storage Option Batteries

Electric Storage Capacity [GW]

Regional Development of Storage Option Power-To-Gas

Hydrogen Generation and Usage [TWh_{H2,LHV} pa]

plan4res Final Webinar, 20 May '21

9

Integrated Multimodal Investment Model (MIM) Key results

We developed

- A MIM approach representing the integrated pan-European Energy system
- considering sector coupling of the sectors electricity, heating, cooling, mobility, gas/fuels
- technology open multimodal optimization approach with perfect foresight

We analyzed several scenarios

- **BAU** leads already to -60%; **COP21** targets will be feasible within projected ETS penalty scheme
- **Carbon Neutrality** will be feasible, too
 - The level of small PV we can utilize maybe a trigger point leading either to
 - Central World higher costs (large units + NPP)
 - Decentral Prosumers lower costs (small PV + Battery, limited large units, but w/o NPP)

robust trends are

- Steady ramp-up of RES; new electricity hubs pop up, e.g. in the North and Baltic Sea, IT, ES, UK
- Power-to-heat and eMobility get dominant; → savings in overall primary energy demand
- Electric demand increases to 180% of 2020
- Lots of storage, providing flexibility by decoupling generation & demand
- Some Power-to-gas only in 2040+ plus synthetic gas and imports of green H₂
- Sensitivity (enforced) Hydrogen Mobility is more cost intensive

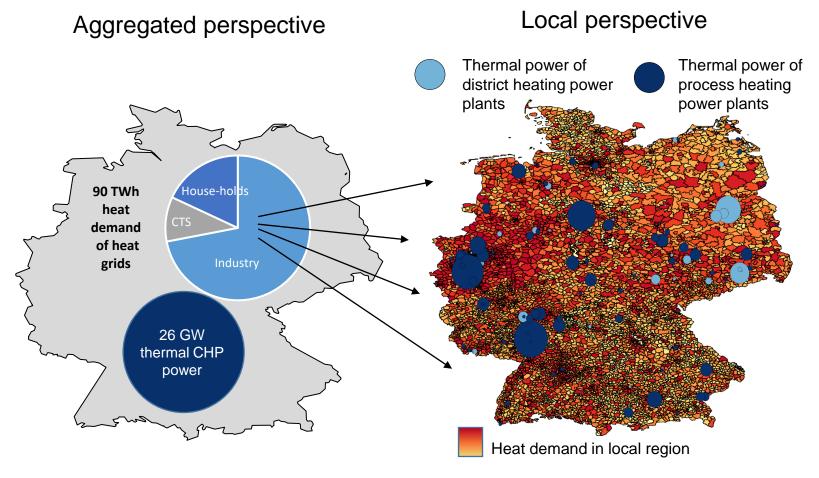
plandres

SIEM

Disaggregated Multi-Energy Model (DMEM) for a European market and electrical grid analysis

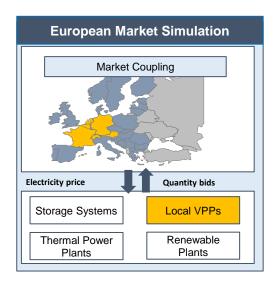
"How can a multi-energy scenario be implemented in detail considering market and grid operation with high spatial resolution?"

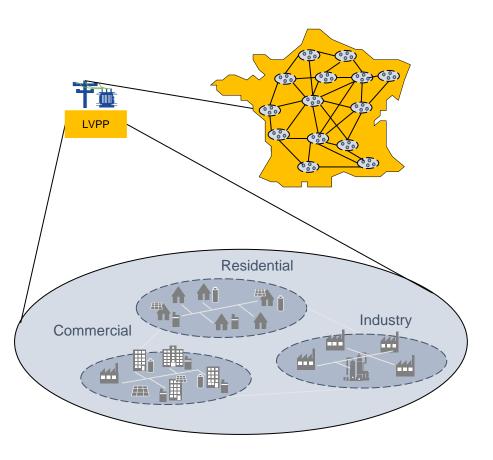
- Disaggregated Multi-Energy Model (DMEM): how it works in nutshell
- Results of market and grid simulation of a carbon neutral scenario for 2040 from MIM
- Key results of the study



Spatial resolution of heating supply

- Modelling decentral energy supply requires high spatial resolution due to local constraints
- Heat supply technologies are allocated according to demand based on spatial data
- Local perspective necessary to determine optimized heating supply in combination with electricity supply

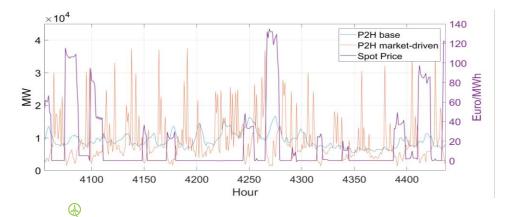


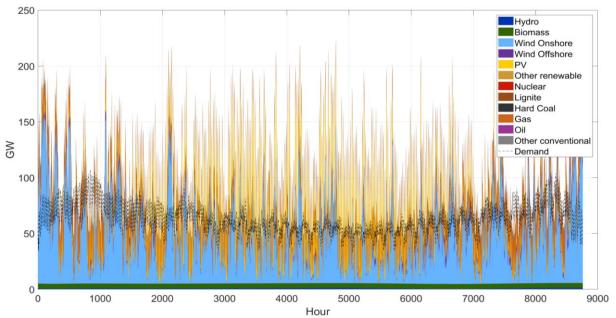


Integration of decentral electricity suppliers

- Market integration of distributed technologies possible within market simulation
- Aggregation of flexible technologies (electric vehicles, CHPs, power-toheat, etc...) as local virtual power plants (LVPPs)
- Integration of LVPPs as into the market simulation enables evaluation of different operation modes:
 - Maximize own consumption
 - Market-driven operation

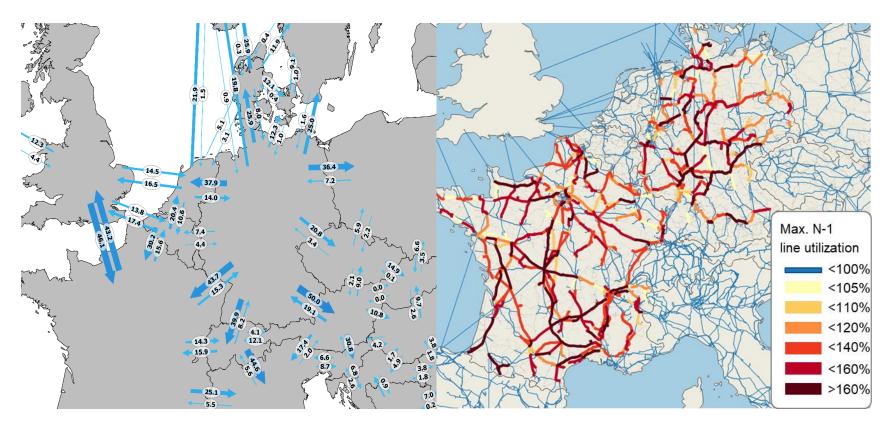
Aggregation of decentral demand and supply according to sector on substation level





Exemplary demand and generation schedules

- Electricity generation in Germany mainly dominated by volatile feed-in of wind onshore and PV
- Some hours with high surpluses
- Flexibility for compensation needed



Market integration of decentral powerto-heat units can influence their schedules significantly due to price incentives

Exchange flows and impact on the grid

- High aggregated commercial exchange flows
- Leads to high N-1 line utilization in power flow simulation
- Redispatch measures including operation of power-to-gas units
- Redispatch costs show necessity of further grid expansion

Disaggregated Multi-Energy Model (DMEM) Key results

Modeling detailed heating supply

- Including heating sector requires high spatial resolution due to local demand and supply structures
- Local heating demand can be supplied by a mix of decentral technologies and central power plants according to local availability

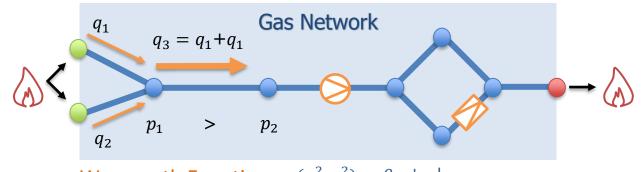
Analysis of the Pan-European electricity market and grid

- An electricity supply largely based on wind and solar energy leads to a high volatility of generation
- Market integration of small decentral suppliers and consumers, e.g. power-to-heat increases market efficiency due to price incentives
- Further compensation through international electricity exchange, which, however, is one driver of high grid utilization
- Impact on the gas grid of gas demand and power-to-gas injection evaluated by the GNO model

Gas grid analysis on pan-European Scale

"Feasibility Analysis of Market Simulation Results by Gas Grid Integration to Electricity Grid and Gas Network Optimization"

- Gas network optimization (GNO) model: how it works in nutshell
- Proof of concept study for using the GNO on pan-European scale to evaluate feasibility of gas related decisions of MIM and DMEM (including usage of power-to-gas)
- Key results of the study


Gas Network Optimization (GNO) Model – How it works, in a nutshell

Nomination of validations (NoVa): Is the given amounts of gas flow at entries and exits technically feasible?

- A stationary gas network optimization model
- A mixed integer non-linear program (MINLP)
 Input:
- A gas network → Graph representation
 - Pipelines, nodes, exits & entries, active components
- A Scenario: Amounts of gas flow at entries and exits
 Constraints
- Mass flow is conserved at nodes
- Gas moves according to thermodynamic laws
- Gas pressure drops as it flows through pipelines
 - Weymouth Equation \rightarrow non-linear equations
- Gas pressure is regulated by active components
 - Valves, control valves, compressor stations \rightarrow subnetworks
 - States: bypassed, closed, active \rightarrow binary variables

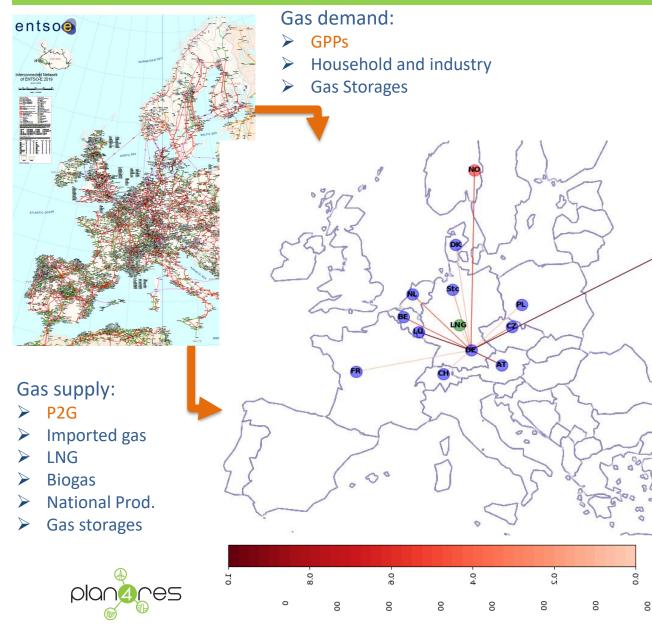
Output:

- Feasibility of the given scenario
- State of the network for a feasible scenario
 pland res

Weymouth Equation: $\alpha(p_1^2 - p_2^2) = \beta q_3 |q_3|$

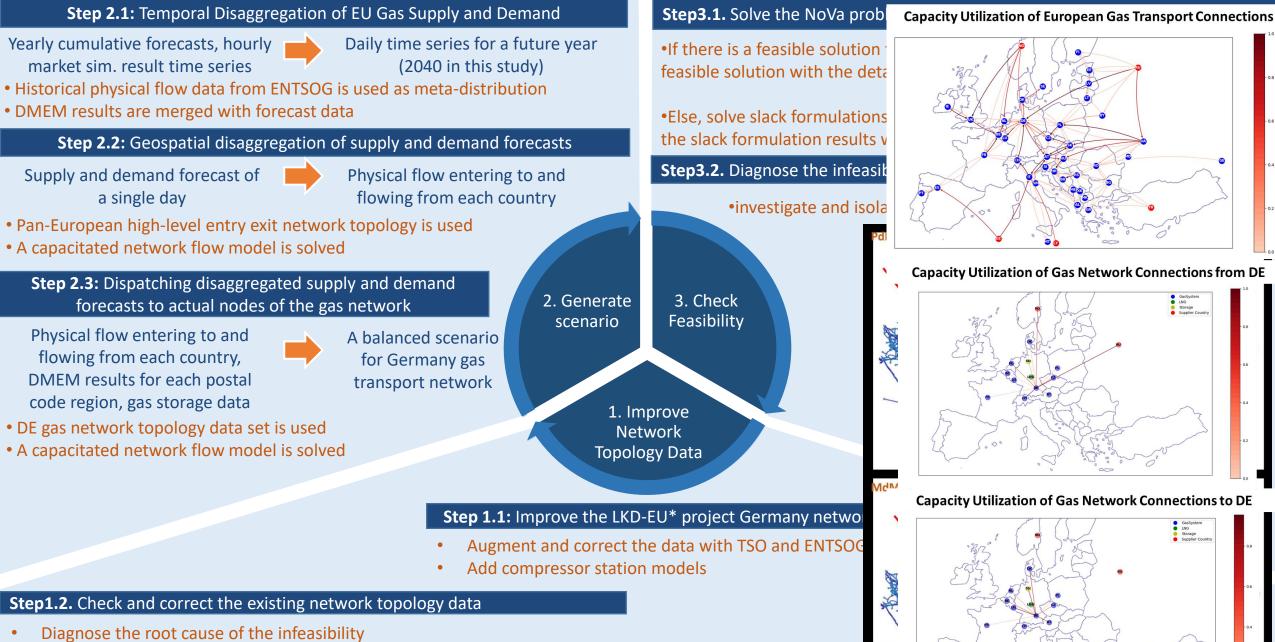
In CS1, GNO is used to evaluate:

- Feasibility of gas network related decision of the DMEM TGO and MIM
- Give feedback to MIM and DMEM TGO from results of infeasibility analysis


So, a method for analysis to extend NoVa on a pan-European scale is proposed and tested, by addressing the issues:

- Spatio-temporally alignment of GNO to DMEM TGO
- Scarcely available pan-European gas transport network data -Insufficient data for the GNO

A proof of concept study on using the GNO on **pan-European scale** to evaluate feasibility of gas related decisions of MIM and DMEM by **gas grid-electricity grid coupling**



Method used for the proof of concept:

- Select a restricted region where network topology data can be constructed during project time span: Germany
 - A readily-available network topology data set for DE is corrected & improved using TSO and ENTSOG data
 - 58 compressor stations in DE are modeled from partially available public data and network topology limitations
- Use available pan-European supply /demand data & high
 - level gas network topology to generate valid scenarios for the restricted region (DE)
 - Replace ENTSOG data with DMEM results where applicable
 - Spatially align scenarios to postal code region-based DMEM results
 - Imply limitations from power-to-gas, if there are any power-to-gas facilities
 - Use capacitated network flow models to generate scenarios
 - Evaluate feasibility of the scenarios with GNO
- Analyze infeasible scenarios and generate feedback

- Error in base data set
- Change in the topology in the future state of data
- Correct the data set accordingly.

*Kunz, F., Weibezahn, J., Hauser, P., H Data Set: Electricity, Heat, and Ga 1.0.0).Zenodo. https://doi.org/10.5281

Key results

- We demonstrated the proof-of-concept for integrating gas network models and electric grid transport models by
 - proposing a method to generate practically relevant scenarios for Germany and evaluated those by modelling the German gas grid in detail embedded in the constraints of pan-European gas network and also in the electric operation from dispatch and market clearing
 - demonstrating the *feasibility* of the proposed method on *a pan-European scale*
- The proposed method is helpful for further modeling the energy system to assess the role of gas network in energy transition
 - e.g., as *a flexibility to electricity grid* or regarding *new technologies* like power-to-gas.
- We assembled a feasible data set for demonstration from publicly available data sources
 - A data set for pan-European gas supply and demand historical data and forecasts
 - An exemplary data set for Germany for the high-pressure gas transport, which should be further improved

Thank you for attendance Questions to Case Study 1

Dieter Most dieter.most@siemens.com

Lothar Wyrwoll I.wyrwoll@iaew.rwth-aachen.com

Inci Yueksel-Erguen yueksel-erguen@zib.de

22

