

Case Study 3: Assessing Feasibility of Scenarios, cost of Renewable integration and value of flexibilities for the European electricity system

by S. Charousset, 20 May '21;

Joint work of:

- Wim van Ackooij, Sandie Balaguer, Sandrine Charousset, Dominique Daniel, Laurent Dubus, Yohan Moreau, Slimane Noceir, Nadia Oudjane, Felix Trieu (EDF)
- Antonio Frangioni, Rafael Lobato, Ali Ghezelsoflu, Nicollo Iardella (Pisa)
- Utz-Uwe Haus, Alfio Lazzaro (HPE)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773897

CS3 - Objectives

□ Case study 3 focuses on the Pan-European electricity sector in 2050

- The objective of this case study is to assess the plan4res tool's ability to capture
 - The feasibility of a given (external) Scenario for the electricity system
 - > With uncertainties
 - >Taking into account technical constraints, including dynamic robustness
 - The Impact of different levels of RES integration on the European system costs
 - > Electricity generation cost
 - > Cost to ensure the dynamic robustness of the system (Reserves, Inertia)
 - The Value of different flexibility services: system cost reduction coming from using the flexibility potentials of the different system assets.
 - > Examples from
 - o Storage
 - o Interconnections
 - Thermal generation

CS3 - Methodology

3

Scenario : openENTRANCE technoFriendly 1.0

□ Power Sector:

- Decarbonized
- Steady increase of Wind and PV
- Significant reduction of Fossil (oil & gas)

CCS

Demand:

- Electrification of heat
- Reduction of gas
- Increase of elec transport

Source: openEntrance D3.1, D7.1 www.openentrance.eu

Climatic data: Copernicus C3S Energy

□ Scenarised hourly time series over 1 year for:

- Electricity demand per region
- Load factors per region:
 - PV Power
 Onshore WindPower
 Offshore WindPower

- Opernicus Europe's eyes on Earth Climate Change Service
- Inflows to reservoirs per countries

The dataset used

□ openENTRANCE technoFriendly 1.0, 2030

Regions :

- France
- Germany
- Italy
- Switzerland
- Benelux
- Iberia= Spain+Portugal
- **Britain**= United Kingdom + Ireland
- Eastern Europe= Austria+Czech Republic+Hungary+Poland+Slovakia
- **Benelux** = Belgium+Luxembourg+Netherlands
- **Baltics** = Estonia+Latvia+Lithuania
- Scandinavia= Denmark+Finland+Sweden+Norway
- Balkans= Non EU

Balkans+Bulgaria+Croatia+Greece+Romania+Slovenia

Installed electricity Generation mix

First Step: Generation mix Adaptation

Scenario Assessment

Marginal Costs of Electricity From Jul 1 to June 30

Storage in Hydro (Aggregated) Reservoirs From Jul 1 to June 30

Volume reservoir EasternEurope

Italy

Switzerland

Eastern Europe

Electricity generation (1 scenario)

Hourly Electricity demand over 1 year (1 scenario) rom Jul 1 to June 30

Electricity Generation and interconnections (1 scenario)

Biomass energy generated (MWh)

Gas energy generated (MWh)

PV energy generated (MWh)

Nuclear energy generated (MWh)

Hourly Profiles for specific weeks

Winter Week

-25000 -50000

-25000

Value of Flexibilities

Interconnections

□ Interco Capacities reduced by 10 & 25% or increased by 10%

Battery Storage

□ Battery Capacities reduced by 10 & 25% or increased by 10% or 25%

Nuclear generation

Nuclear flexibility in 1 Country increased/decreased (MinPower, Ramping, Min Durations On/Off)

Scenario	Cost deviation in France (%)	Cost deviation in Europe (%)
-	6.90	2.58
+	-4.14	-0.18

Impact on operation cost

Impact of hosting various shares of Renewable Energy

VRE Scenarios : Installed Capacity

From 57 to 81% Variable Renewable Generation (Wind and PV power) in the electricity generation mix

VRE Scenarios: generation

VRE Curtailement

**** * * ***

Costs

Conclusion

- The models are able to evaluate the feasibility of a given long-term energy mix scenario, and to assess the costs of this scenario from the point of view of the electricity system.
- It is possible to run flexibility assessment studies, in order to evaluate the value of a given kind of flexibility.
- Finally we demonstrated that the models were able to capture the cost and value of hosting more Variable renewable Generation Systems in the electricity mix.

Thank you for attendance Questions to Case Study 3

Sandrine Charousset Sandrine.charousset@edf.fr

plangres

Wim van Ackooij Sandie Balaguer Dominique Daniel Slimane Noceir Nadia Oudjane

