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Mixed Integer Programming
Concerned with the class of optimization problems of the form

min cTx
s.t. Ax ≤ b
ℓ ≤ x ≤ u

xi ∈ Z ∀i ∈ I

with A ∈ Rm×n, c ∈ Rn,b ∈ Rm,u ∈ (R ∪ {∞})n, l ∈ (R ∪ {−∞})n,
variables x ∈ Rn with j ∈ I ⊂ N = {1, . . . ,n}
for every row i ∈ M = {1, . . . ,m}.

Most successful general solving paradigm: LP-based branch-and-bound.

Gleixner & Gottwald · PaPILO: A parallel presolving library for[1ex] MIP and LP with multi-precision support 2 / 25



A small example

Before and after coefficient strengthening:
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Goals of MIP presolving
MIP presolving has several goals:
• tighten the formulation, i.e., the LP relaxation
• reduce size: remove “redundant” variables, constraints, nonzeros
• collect global information: conflicts/cliques, implications
• identify structure, e.g., special constraint types or symmetry
• improve numerics

This is not only possible when the formulation contains trivial redundancies:
Redundancies or special structures are sometimes created during presolving.
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Performance impact of presolving
Presolving is one of the components with largest impact on performance:

[Achterberg, et al. „Presolve Reductions in Mixed Integer Programming.“, INFORMS
Journal on Computing, vol 32, pp 473-506, 2020]
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PaPILO: a new presolving framework
The main motivation for a new framework comes from current limitations of
the existing implementations:
• solver-specific
• do not exploit parallelism
• bound to floating-point arithmetic

⇝ PaPILO: Parallel Presolve for Integer and Linear Optimization provides
• solver-independent presolving
• a new parallelization scheme
• templatized arithmetic
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Types of reductions

Primal reductions
• based on feasibility reasoning
• no feasible solution is cut off

• e.g. 0 ≤ x, y ≤ 3; x+ y ≤ 2 → x, y ≤ 2

Dual reductions
• based on optimality reasoning
• weak dual reduction: no optimal solution is cut off

• e.g. min x s.t. x ≥ 0 → x = 0

• strong dual reduction: at least one optimal solution remains

• e.g. min y s.t. x, y ≥ 0 → x = 0

Gleixner & Gottwald · PaPILO: A parallel presolving library for[1ex] MIP and LP with multi-precision support 8 / 25



Types of reductions

Primal reductions
• based on feasibility reasoning
• no feasible solution is cut off

• e.g. 0 ≤ x, y ≤ 3; x+ y ≤ 2 → x, y ≤ 2

Dual reductions
• based on optimality reasoning
• weak dual reduction: no optimal solution is cut off

• e.g. min x s.t. x ≥ 0 → x = 0

• strong dual reduction: at least one optimal solution remains

• e.g. min y s.t. x, y ≥ 0 → x = 0

Gleixner & Gottwald · PaPILO: A parallel presolving library for[1ex] MIP and LP with multi-precision support 8 / 25



Types of reductions

Primal reductions
• based on feasibility reasoning
• no feasible solution is cut off

• e.g. 0 ≤ x, y ≤ 3; x+ y ≤ 2 → x, y ≤ 2

Dual reductions
• based on optimality reasoning
• weak dual reduction: no optimal solution is cut off

• e.g. min x s.t. x ≥ 0 → x = 0
• strong dual reduction: at least one optimal solution remains

• e.g. min y s.t. x, y ≥ 0 → x = 0

Gleixner & Gottwald · PaPILO: A parallel presolving library for[1ex] MIP and LP with multi-precision support 8 / 25



Types of reductions

Primal reductions
• based on feasibility reasoning
• no feasible solution is cut off

• e.g. 0 ≤ x, y ≤ 3; x+ y ≤ 2 → x, y ≤ 2

Dual reductions
• based on optimality reasoning
• weak dual reduction: no optimal solution is cut off

• e.g. min x s.t. x ≥ 0 → x = 0
• strong dual reduction: at least one optimal solution remains

• e.g. min y s.t. x, y ≥ 0 → x = 0

Gleixner & Gottwald · PaPILO: A parallel presolving library for[1ex] MIP and LP with multi-precision support 8 / 25



Organization in rounds
Reductions of one presolver can enable further reductions by other
presolvers⇝ iterative procedure until reductions stall:

choose presolver set

Presolver 1

Presolver 2

Presolver 3

Presolver 4

Presolver 5

stop presolving?

start MIP solving
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Complexity of presolvers
In PAPILO we attempt a formal specification of computational complexity:

Fast: O(n log n) where n = changed number of nonzeros since last call
• e.g. Coefficient/bound Strengthening

Medium: O(N logN) where N = number of nonzeros
• e.g. Dual fix, Simple probing

Exhaustive: O(N2) where N = number of nonzeros
• e.g. Probing, Dominated columns

´
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Presolvers in PAPILO
• Singleton columns/row
• Coefficient Strengthening
• Bound Strengthening
• Simple Probing
• Dualfix
• Detection of parallel rows and columns
• Substitution of implied free variables with special treatment for singleton columns
and doubleton equations

• Simplify Inequalities
• Primal and dual implied integer detection
• Exploitation of complementary slackness
• Probing
• Dominated Columns
• Removal of redundant penalty variables
• Removal of linear dependent equations
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A fast presolver: bound strengthening

Example

x1, x2, x3 ∈ {0, 1, 2, 3, 4}
4x1 − 3x2 + 5x3 ≤ 2

⇒ x3 ≤
2− (4x1 − 3x2)

5

≤
2− α1,2

min
5 ≤ 2+ 12

5 = 2.8

→ x3 ≤ 2

General
• if aik > 0 then we derive a new upper bound uk = min{uk, ⌊

bi−αS
min

aik ⌋}

• if aik < 0 then we derive a new lower bound lk = max{lk, ⌈
bi−αS

min
aik ⌉}
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An exhaustive presolver: probing

Probing is an important presolve step for MILP
problems with binary variables

Consecutively fix a binary variable to 0 and 1 and
inspect consequences from propagating those bound
changes.

Possible reductions
• If one branch is infeasible the variable can be fixed
to the other branch

• If another variable is fixed to different values in
both branches it can be substituted

• Bounds of variables can be tightened to the
weakest of both branches
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What is PAPILO?

• Parallel Presolve for Integer and Linear Optimization
• C++14 based software package
• Provides presolve and postsolve routines for MILP problems
• New addition to the SCIP Optimization Suite 7 [Gamrath et al. 2020]
• Additionally available: https://github.com/scipopt (coming soon)
• Supports versatile use-cases

• Frontend for solvers like SCIP, SoPlex, HiGHS
• File-based presolve and postsolve for MPS files
• Header-only library
• As SCIP presolver plugin
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Sequential presolving

problem

Presolver 1

Presolver 2

reads problem

modifies problem

reads problem

modifies problem
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Difficulties for parallel presolving

problem

Presolver 1
Presolver 2

reads problem

modifies problem

reads problem

modifies problem
Problem might have changed!

Applying reductions might cause illegal states!

General difficulties
• individual presolving steps are usually fast
• regular synchronization may limit scalability
• ensuring deterministic behavior may limit scalability
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Transaction-based design

problem

Presolver 2

Presolver 1

Presolver x

Transactions 2

Transactions 2

Transactions 1

Transactions 1

Transactions x

Transactions x

reads problem returns

returns

returns

apply presolver tsx 1
save modified states

check if state was modified
apply tsx

save modified states

check if state was modified
apply tsx

save modified states

Transaction = reduction + data dependencies
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Conflict detection and resolution

How does PAPILO detect and resolve conflicts?
• Obtains a set of transactions by calling presolvers
• Transactions are applied in some sequential order
• When rows or columns are modified their state is recorded as such
• If a lock of a transaction conflicts with the state of rows/columns discard it
Bound changes on the same column can be resolved by keeping the tightest
bounds.
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Trade-off: External vs. internal parallelism
Internal parallelization of probing
Speedup of ex10 using SCIP 7.0 with PAPILO for different numbers of threads.
Additionally show ideal linear speedup curves when 0% and 5% of the time
are spent inside sequential code.
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Impact on MIPLIB 2017

PAPILO 1.2.0+SCIP 7.0.2.4 SCIP 7.0.2.4 wo presolving relative

Subset instances solved time nodes solved time nodes time nodes

all 233 112 753.4 3942 92 1299.3 4044 1.72 1.03

[0,tilim] 117 112 159.2 2129 92 473.5 3580 2.97 1.68
[1,tilim] 116 111 165.8 2189 91 497.7 3695 3.00 1.69
[10,tilim] 110 105 202.3 2517 85 665.3 4456 3.29 1.77
[100,tilim] 90 85 338.7 4020 65 1220.9 7320 3.61 1.82
[1000,tilim] 60 55 510.5 4843 35 2388.8 10260 4.68 2.12

affected 117 112 159.2 2129 92 473.5 3580 2.97 1.68
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Exact SCIP with and without rational presolving

presolving disabled presolving enabled

Test set size solved time nodes solved time (presolving) nodes

FPEASY 168 165 42.1 6145.3 168 25.5 (0.22) 4724.1
NUMDIFF 91 66 216.6 7237.2 86 58.7 (1.23) 2867.2
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Comparison of exact and floating-point presolving

floating-point presolving exact presolving

Test set thrds time rnds fixed agg bdchg time rnds fixed agg bdchg

FPEASY 1 0.01 3.2 8.5 3.5 10.4 0.25 3.2 8.5 3.5 10.4
20 0.01 3.2 8.5 3.5 10.4 0.14 3.2 8.5 3.5 10.4

NUMDIFF 1 0.04 8.3 53.8 55.7 51.4 0.89 7.2 41.4 42.9 55.8
20 0.04 8.3 53.8 55.7 51.4 0.50 7.2 41.4 42.9 55.8
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Take-away message

PaPILO is the first
• parallel
• multi-precision
• solver-independent
library for presolving MIPs and LPs.

Not discussed
• presolving techniques
• runtime scheduling of parallel tasks (exploit TBB)
• detailed computational analysis (ongoing)
• …
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