PaPILO: A parallel presolving library for MIP and LP with multi-precision support

Ambros Gleixner and Leona Gottwald

Zuse Institute Berlin

May 20, 2020

Outline of the talk

Introduction

Mixed Integer Programming Role of presolving Motivations for a new framework

Introduction to IP presolving techniques

Classification of presolvers IP presolvers in PAPILO

PAPILO

Workflow of PAPILO Difficulties parallelising presolvers

Computational experiments

Floating-point presolving Rational presolving

Mixed Integer Programming

Concerned with the class of optimization problems of the form

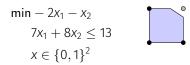
min
$$c^T x$$

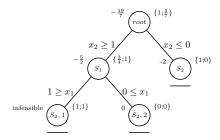
s.t. $Ax \le b$
 $\ell \le x \le u$
 $x_i \in \mathbb{Z} \ \forall i \in I$

with $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $u \in (\mathbb{R} \cup \{\infty\})^n$, $l \in (\mathbb{R} \cup \{-\infty\})^n$, variables $x \in \mathbb{R}^n$ with $j \in I \subset N = \{1, \dots, n\}$ for every row $i \in M = \{1, \dots, m\}$.

Most successful general solving paradigm: LP-based branch-and-bound.

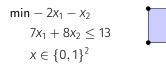
A small example



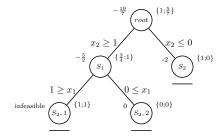


A small example

Before and after coefficient strengthening:

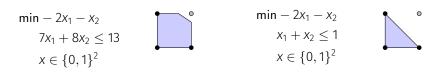


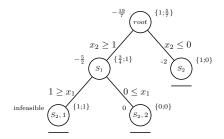
$$\min - 2x_1 - x_2 x_1 + x_2 \le 1 x \in \{0, 1\}^2$$



A small example

Before and after coefficient strengthening:





Goals of MIP presolving

MIP presolving has several goals:

- tighten the formulation, i.e., the LP relaxation
- reduce size: remove "redundant" variables, constraints, nonzeros
- collect global information: conflicts/cliques, implications
- identify structure, e.g., special constraint types or symmetry
- improve numerics

This is not only possible when the formulation contains trivial redundancies: Redundancies or special structures are sometimes created during presolving.

Performance impact of presolving

Presolving is one of the components with largest impact on performance:

bracket		default		d	isable pres	affected			
	models	tilim	tilim	faster	slower	time	nodes	models	time
all	3047	547	1035	255	1755	3.36	1.27		
$\geq 0 \text{ sec}$	2511	16	504	255	1755	4.52	1.91	2411	4.80
$\geq 1 \text{ sec}$	1944	16	504	210	1634	6.60	2.12	1929	6.73
$\geq 10 \text{ sec}$	1575	16	504	141	1380	9.05	2.29	1564	9.23
$\geq 100 \text{ sec}$	1099	16	504	86	983	12.36	2.43	1095	12.50
$\geq 1000 \text{ sec}$	692	16	504	34	643	19.48	2.17	691	19.57

Table 1: Impact of disabling presolve

[Achterberg, et al. "Presolve Reductions in Mixed Integer Programming.", INFORMS Journal on Computing, vol 32, pp 473-506, 2020]

PaPILO: a new presolving framework

The main motivation for a new framework comes from current limitations of the existing implementations:

- solver-specific
- do not exploit parallelism
- bound to floating-point arithmetic

PaPILO: a new presolving framework

The main motivation for a new framework comes from current limitations of the existing implementations:

- solver-specific
- do not exploit parallelism
- bound to floating-point arithmetic

→ PaPILO: Parallel Presolve for Integer and Linear Optimization provides

- solver-independent presolving
- a new parallelization scheme
- templatized arithmetic

Outline of the talk

Introduction

Mixed Integer Programming Role of presolving Motivations for a new framework

Introduction to IP presolving techniques Classification of presolvers

IP presolvers in PAPILO

PaPILO

Workflow of PAPILO Difficulties parallelising presolvers

Computational experiments

Floating-point presolving Rational presolving

Primal reductions

- · based on feasibility reasoning
- no feasible solution is cut off

- based on optimality reasoning
- weak dual reduction: no optimal solution is cut off
- strong dual reduction: at least one optimal solution remains

Primal reductions

- based on feasibility reasoning
- no feasible solution is cut off
 - e.g. $0 \le x, y \le 3$; $x + y \le 2 \rightarrow x, y \le 2$

- based on optimality reasoning
- weak dual reduction: no optimal solution is cut off
- strong dual reduction: at least one optimal solution remains

Primal reductions

- · based on feasibility reasoning
- no feasible solution is cut off
 - e.g. $0 \le x, y \le 3$; $x + y \le 2 \rightarrow x, y \le 2$

- based on optimality reasoning
- weak dual reduction: no optimal solution is cut off
 - e.g. min x s.t. $x \ge 0 \rightarrow x = 0$
- strong dual reduction: at least one optimal solution remains

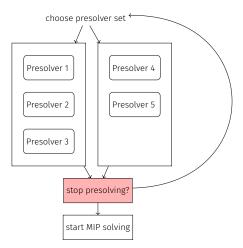
Primal reductions

- · based on feasibility reasoning
- no feasible solution is cut off
 - e.g. $0 \le x, y \le 3$; $x + y \le 2 \rightarrow x, y \le 2$

- based on optimality reasoning
- weak dual reduction: no optimal solution is cut off
 - e.g. min x s.t. $x \ge 0 \rightarrow x = 0$
- · strong dual reduction: at least one optimal solution remains
 - e.g. min y s.t. $x, y \ge 0 \rightarrow x = 0$

Organization in rounds

Reductions of one presolver can enable further reductions by other presolvers \rightsquigarrow iterative procedure until reductions stall:



Complexity of presolvers

In PAPILO we attempt a formal specification of computational complexity:

Fast: $O(n \log n)$ where n = changed number of nonzeros since last call

• e.g. Coefficient/bound Strengthening

Medium: $O(N \log N)$ where N = number of nonzeros

• e.g. Dual fix, Simple probing

Exhaustive: $O(N^2)$ where N = number of nonzeros

• e.g. Probing, Dominated columns

Presolvers in PAPILO

- Singleton columns/row
- Coefficient Strengthening
- Bound Strengthening
- Simple Probing
- Dualfix
- Detection of parallel rows and columns
- Substitution of implied free variables with special treatment for singleton columns and doubleton equations
- Simplify Inequalities
- Primal and dual implied integer detection
- Exploitation of complementary slackness
- Probing

ZIB

- Dominated Columns
- · Removal of redundant penalty variables
- Removal of linear dependent equations

A fast presolver: bound strengthening

Example

$$x_1, x_2, x_3 \in \{0, 1, 2, 3, 4\}$$
$$4x_1 - 3x_2 + 5x_3 \le 2$$

$$\Rightarrow x_3 \leq \frac{2 - (4x_1 - 3x_2)}{5}$$

A fast presolver: bound strengthening

Example

$$x_1, x_2, x_3 \in \{0, 1, 2, 3, 4\}$$
$$4x_1 - 3x_2 + 5x_3 \le 2$$

$$\Rightarrow x_3 \le \frac{2 - (4x_1 - 3x_2)}{5} \le \frac{2 - \alpha_{min}^{1,2}}{5}$$

A fast presolver: bound strengthening

Example

$$x_1, x_2, x_3 \in \{0, 1, 2, 3, 4\}$$
$$4x_1 - 3x_2 + 5x_3 \le 2$$

$$\Rightarrow x_3 \le \frac{2 - (4x_1 - 3x_2)}{5} \le \frac{2 - \alpha_{min}^{1,2}}{5} \le \frac{2 + 12}{5} = 2.8$$
$$\Rightarrow x_3 \le 2$$

General

ZIB /

- if $a_{ik} > 0$ then we derive a new upper bound $u_k = \min\{u_k, \lfloor \frac{b_i \alpha_{\min}^{min}}{a_{ik}} \rfloor\}$
- if $a_{ik} < 0$ then we derive a new lower bound $l_k = \max\{l_k, \lceil \frac{b_i \alpha_{\min}^m}{a_{ik}} \rceil\}$

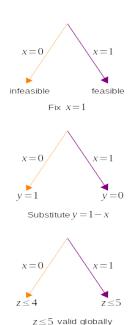
An exhaustive presolver: probing

Probing is an important presolve step for MILP problems with binary variables

Consecutively fix a binary variable to 0 and 1 and inspect consequences from propagating those bound changes.

Possible reductions

- If one branch is infeasible the variable can be fixed to the other branch
- If another variable is fixed to different values in both branches it can be substituted
- Bounds of variables can be tightened to the weakest of both branches



Outline of the talk

Introduction

Mixed Integer Programming Role of presolving Motivations for a new framework

Introduction to IP presolving techniques

Classification of presolvers IP presolvers in PAPILO

PAPILO

Workflow of PAPILO Difficulties parallelising presolvers

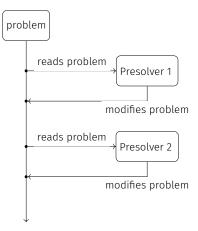
Computational experiments

Floating-point presolving Rational presolving

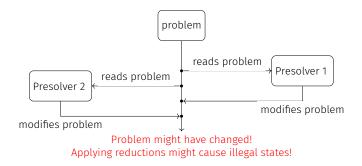
What is **PAPILO**?

- Parallel Presolve for Integer and Linear Optimization
- C++14 based software package
- Provides presolve and postsolve routines for MILP problems
- New addition to the SCIP Optimization Suite 7 [Gamrath et al. 2020]
- Additionally available: https://github.com/scipopt (coming soon)
- Supports versatile use-cases
 - Frontend for solvers like SCIP, SoPlex, HiGHS
 - File-based presolve and postsolve for MPS files
 - Header-only library
 - As SCIP presolver plugin

Sequential presolving

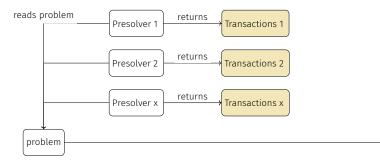


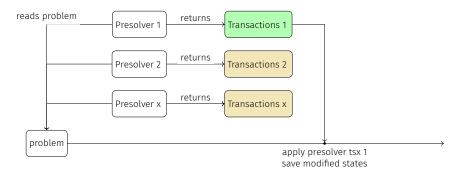
Difficulties for parallel presolving

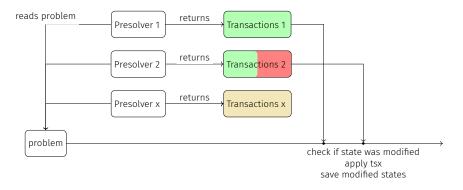


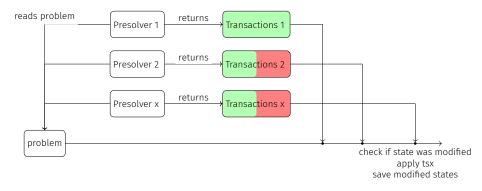
General difficulties

- individual presolving steps are usually fast
- regular synchronization may limit scalability
- ensuring deterministic behavior may limit scalability









Conflict detection and resolution

How does PAPILO detect and resolve conflicts?

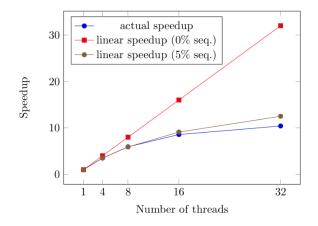
- Obtains a set of transactions by calling presolvers
- Transactions are applied in some sequential order
- When rows or columns are modified their state is recorded as such
- If a lock of a transaction conflicts with the state of rows/columns discard it

Bound changes on the same column can be resolved by keeping the tightest bounds.

Trade-off: External vs. internal parallelism

Internal parallelization of probing

Speedup of ex10 using SCIP 7.0 with PAPILO for different numbers of threads. Additionally show ideal linear speedup curves when 0% and 5% of the time are spent inside sequential code.



Outline of the talk

Introduction

Mixed Integer Programming Role of presolving Motivations for a new framework

Introduction to IP presolving techniques

Classification of presolvers IP presolvers in PAPILO

PAPILO

Workflow of PAPILO Difficulties parallelising presolvers

Computational experiments

Floating-point presolving Rational presolving

Impact on MIPLIB 2017

Subset		PAPILO 1.2.0+SCIP 7.0.2.4			SCIP 7.0).2.4 wo pre	relative		
	instances	solved	time	nodes	solved	time	nodes	time	nodes
all	233	112	753.4	3942	92	1299.3	4044	1.72	1.03
[0,tilim]	117	112	159.2	2129	92	473.5	3580	2.97	1.68
[1,tilim]	116	111	165.8	2189	91	497.7	3695	3.00	1.69
[10,tilim]	110	105	202.3	2517	85	665.3	4456	3.29	1.77
[100,tilim]	90	85	338.7	4020	65	1220.9	7320	3.61	1.82
[1000,tilim]	60	55	510.5	4843	35	2388.8	10260	4.68	2.12
affected	117	112	159.2	2129	92	473.5	3580	2.97	1.68

Exact SCIP with and without rational presolving

	presolving disabled					presolving enabled					
Test set	size	solved	time	nodes	solved	time	(presolving)	nodes			
FPEASY NUMDIFF	168 91	165 66	42.1 216.6	6145.3 7237.2	168 86	25.5 58.7	(0.22) (1.23)	4724.1 2867.2			

Comparison of exact and floating-point presolving

	floating-point presolving					exact presolving				
Test set thrds	time	rnds	fixed	agg	bdchg	time	rnds	fixed	agg	bdchg
FPEASY 1	0.01	3.2	8.5	3.5	10.4	0.25	3.2	8.5	3.5	10.4
20	0.01	3.2	8.5	3.5	10.4	0.14	3.2	8.5	3.5	10.4
NUMDIFF 1	0.04	8.3	53.8	55.7	51.4	0.89	7.2	41.4	42.9	55.8
20	0.04	8.3	53.8	55.7	51.4	0.50	7.2	41.4	42.9	55.8

Take-away message

PaPILO is the first

- parallel
- multi-precision
- solver-independent

library for presolving MIPs and LPs.

Not discussed

- presolving techniques
- runtime scheduling of parallel tasks (exploit TBB)
- · detailed computational analysis (ongoing)

