
Antonio Frangioni
Dipartimento di Informatica, Università di Pisa

plan4res webinar – May 20, 2021



Outline 1

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 1 / 22



Outline 2

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 2 / 22



https://gitlab.com/smspp/smspp-project

Open source (LGPL3)

Public as of February 8, 2021, but some 8+ years in the making

https://gitlab.com/smspp/smspp-project


What SMS++ is 3

A core set of C++-17 classes implementing a modelling system that:

explicitly supports the notion of Block ≡ nested structure

separately provides “semantic” information from “syntactic” details (list
of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised Solver on Block with specific structure

manages any dynamic change in the Block

beyond “just” generation of constraints/variables

supports reformulation/restriction/relaxation of Block

has built-in parallel processing capabilities

should be able to deal with almost anything (bilevel, PDE, . . . )

An hopefully growing set of specialized Block and Solver

In perspective an ecosystem fostering collaboration and code sharing

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 3 / 22



What SMS++ is not 4

An algebraic modelling language: Block / Solver are C++ code

(although it provides some modelling-language-like functionalities)

For the faint of heart: primarily written for algorithmic experts

(although users may benefit from having many pre-defined Block)

Stable: only version 0.4, lots of further development ahead,

significant changes in interfaces not ruled out, actually expected

(although current Block / Solver very thoroughly tested)

Interfaced with many solvers: only Cplex, SCIP, MCFClass, StOpt

(although the list should hopefully grow)

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 4 / 22



Outline 5

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 5 / 22



Block 6

Block = abstract class representing the general concept of
“a (part of a) mathematical model with a well-understood identity”

Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

Physical representation of a Block: whatever data structure is required
to describe the instance (e.g., G , b, c , u)

Possibly alternative abstract representation(s) of a Block:

one Objective (but possibly vector-valued)

any # of groups of static/dynamic Variable

any # of groups of static/dynamic Constraint

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock has k Block::MCFBlock inside)

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 6 / 22



Variable, Constraint, Objective 7

Abstract concepts, thought to be extended (a matrix, a function, any
algebraic constraint, a matrix constraint, a PDE constraint, bilevel
program, vector-valued objective, . . . )

Know which Block they belongs to

Very basic operations (fixed/unfixed, relaxed/enforced,
minimised/maximised, . . . )

Fundamental design decision: “names” are memory addresses =⇒
copying makes a different one

Modification issued each time everything changes

Currently a few “very basic” implementations, such as

ColVariable:Variable: “value = one single real” (possibly ∈ Z)

RowConstraint:Constraint: “l ≤ a real ≤ u” (has dual variable)

FRowConstraint:RowConstraint/FRealObjective:RealObjective:
“a real” given by a Function

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 7 / 22



Function, C05Function, C15Function 8

Depends from a set of Variable , must be evaluated

Evaluation possibly costly, approximate computation supported

C05Function/C15Function deal with 1st/2nd order information,
general concept of “linearization”, local/global pool for reoptimization

Arbitrary hierarchy of :Function possible/envisioned

Currently LinearFunction, DQuadFunction, a few others

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 8 / 22



Block and Solver 9

Solver = general interface between a Block and algorithms solving it
any # of multiple optimal and sub-optimal solutions produced on
demand, certificates of unboundedness/unfeasiblility (rays)

time/resource limits for solutions, but restarts (reoptimization)

flexible user interface via extendable events

lazily reacts to changes in the data of the Block via Modification

Any # of Solver attached to a Block and to each sub-Block (recurs.)

:Solver for a specific :Block can use the physical representation

A general-purpose Solver uses the abstract representation

However, Variable are always present to interface with Solver

Dynamic Variable/Constraint can be generated on demand
(user cuts/lazy constraints/column generation)

CDASolver:Solver is “Convex Duality Aware”: bounds are associated
to dual solutions (possibly, multiple)

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 9 / 22



Block and Modification 10

Most Block components can change (but not all)

Any change is communicated to each interested Solver (attached to the
Block or any of its ancestor) via a Modification object

However, two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

(specialized Solver disregard abstract Modification and vice-versa)

Abstract Modification used to keep both representations in sync
=⇒ a single change may trigger more than one Modification

Each Solver has the responsibility of cleaning up its list of
Modification (smart pointers → memory eventually released)

Solver supposedly reoptimize to improve efficiency, which is easier if you
can see all list of changes at once (lazy update)

GroupModification to (recursively) pack many Modification together
=⇒ different “channels” in Block

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 10 / 22



Support to (coarse-grained) Parallel Computation 11

Block can be (r/w) lock()-ed and read lock()-ed

lock()-ing a Block automatically lock()s all inner Block

lock() (but not read lock()) sets an owner and records its
std::thread::id; other lock() from the same thread fail
(std::mutex would not work there)

Similar mechanism for read lock(), any # of concurrent reads

Write starvation not handled yet

A Solver can be “lent an ID” (solving an inner Block)

The list of Modification of Solver is under an “active guard”
(std::atomic)

Distributed computation under development, can exploit general
serialize/deserialize Block capabilities, Cray/HPE “Fugu” framework

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 11 / 22



R3Block 12

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone) should always work

Available R3Blocks :Block-specific, a :Configuration needed

R3Block completely independent (new Variable/Constraint),
useful for algorithmic purposes (branch, fix, solve, . . . )

Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

map forward solution() and map back Modification() useful, e.g.,
dynamic generation of Variable/Constraint in the R3Block

:Block is in charge of all this, thus decides what it supports

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 12 / 22



A lot of other support stuff 13

Configuration, Solution, State classes

Most objects (Block, Configuration, Solver, Solution, State) have
methods to serialize/deserialize themselves to netCDF files =⇒ have an
(almost) automatic factory

A methods factory for changing the physical representation without
knowing of which :Block it exactly is (standardised interface)

AbstractBlock for constructing a model a-la algebraic language, can be
derived for “general Block + specific part”

PolyhedralFunction[Block], very useful for decomposition

AbstractPath for indexing any Constranit/Variable in a Block

FakeSolver:Solver stashes away all Modification,
UpdateSolver:Solver immediately forwards/R3Bs them

. . .

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 13 / 22



Outline 14

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 14 / 22



Main Existing :Block 15

MCFBlock/MMCFBlock: single/multicommodity flow (p.o.c.)

UCBlock for UC, abstract UnitBlock with several concrete
(ThermalUnitBlock, HydroUnitBlock, . . . ), abstract NetworkBlock
with a few concrete (DCNetworkBlock)

LagBFunction:{C05Function,Block} transforms any Block (with
appropriate Objective) into its dual function

BendersBFunction:{C05Function,Block} transforms any Block

(with appropriate Constraint) into its value function

StochasticBlock implements realizations of scenarios into any Block

(using methods factory)

SDDPBlock represents multi-stage stochastic programs suitable for
Stochastic Dual Dynamic Programming

Regularly new entries (latest BinaryKnapsackBlock)

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 15 / 22



Main “Basic” :Solver 16

MCFSolver: templated p.o.c. wrapper to MCFClass[1] for MCFBlock

DPSolver for ThermalUnitBlock (still needs serious work)

MILPSolver: constructs matrix-based representation of any “LP” Block

+ CPXMILPSolver:MILPSolver and SCIPMILPSolver:MILPSolver

wrappers for Cplex and SCIP (to be improved)

BundleSolver:CDASolver: SMS++-native version of[2] (still shares some
code, dependency to be removed), optimizes any (sum of) C05Function,
several (but not all) state-of-the-art tricks

SDDPSolver: wrapper for SDDP solver StOpt[3] using
StochasticBlock, BendersBFunction and PolyhedralFunction

SDDPGreedySolver: greedy forward simulator for SDDPBlock

Regularly new entries (latest BinaryKnapsackDPSolver)

[1] https://github.com/frangio68/Min-Cost-Flow-Class

[2] https://gitlab.com/frangio68/ndosolver_fioracle_project

[3] https://gitlab.com/stochastic-control/StOpt

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 16 / 22

https://github.com/frangio68/Min-Cost-Flow-Class
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://gitlab.com/stochastic-control/StOpt


Our Masterpiece: LagrangianDualSolver 17

Works for any Block with natural block-diagonal structure: no
Objective or Variable, all Constraint linking the inner Block

Using LagBFunction stealthily constructs the Lagrangian Dual
w.r.t. linking Constraint, R3B-ing or “stealing” the inner Block

Solves the Lagrangian Dual with appropriate CDASolver (e.g., but not
necessarily, BundleSolver), provides dual and “convexified” solution in
original Block

Can attach LagrangianDualSolver and (say) :MILPSolver to same
Block, solve in parallel!

Weeks of work in days/hours (if Block of the right form already)

Hopefully soon BendersDecompositionSolver (crucial component
BendersBFunction existing and tested)

Multilevel nested parallel heterogeneous decomposition by design

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 17 / 22



Outline 18

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 18 / 22



The many things that we do not have (yet) 19

A relaxation-agnostic Branch-and-X Solver

Many other forms of (among many other things):

Variable (Vector/MatrixVariable, FunctionVariable, . . . )

Constraint (SOCConstraint, SDPConstraint, PDEConstraint,
BilevelConstraint, EquilibriumConstraint, . . . )

Objective (RealVectorObjective, . . . )

Function (AlgebraicFunction, . . . )

Better handling of many things (groups of stuff, Modification, . . . )

Interfaces with many other general-purpose solvers (GuRoBi,
OSISolverInterface, Couenne, OR-tools CP-SAT Solver, . . . )

Many many many more :Block and their specialised :Solver

Translation layers from real modelling languages (AMPL, JuMP, . . . )

In a word: users/mindshare – chicken-and-egg problem

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 19 / 22



Outline 20

1 SMS++: design goals

2 SMS++: basic components

3 SMS++: existing Block and Solver

4 SMS++: (some of) the missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 20 / 22



Conclusions and (a lot of) future work 21

SMS++ is there, actively developed, lasting legacy of plan4res

Currently mostly useful for “extreme” use cases

Will be more useful after having attracted mindshare:

improve collaboration and code reuse, reduce huge code waste

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[4]

A system to help developers of advanced optimization algorithms and
users of highly demanding models to meet

Whether you are a developer or a user, give it a look

[4] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 21 / 22



Acknowledgements 22

Copyright © PLAN4RES Partners 2021, all rights reserved.

This document may not be copied, reproduced, or modified in whole or in part for
any purpose without written permission from the plan4res Consortium. In addition,
an acknowledgement of the authors of the document and all applicable portions of

the copyright notice must be clearly referenced.

This document may change without notice.

The content of this document only reflects the author’s views. The European
Commission / Innovation and Networks Executive Agency is not responsible for any

use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 773897

A. Frangioni (DI — UniPi) SMS++ May 20, 2021 22 / 22


	SMS++: design goals
	SMS++: basic components
	SMS++: existing Block and Solver
	SMS++: (some of) the missing pieces
	Conclusions

